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j To facilitate sharing in this sort of environment, an operating system component called the

Butler is proposed. As a host, the Butler is responsible for administering a sharing policy on

its local machine. This includes authenticating sharers. granting rights in accordance with a

locally established policy, and creating execution environments for guests. As an agent, the

Butler negotiates with hosts on remote machines to obtain resources requested by a client,

and performs authentication to discourage a remota host from exploiting the client.

To protect a machine from exploitation by a guest, the host Butler relies upon a capability.

based accounting system called the Banker, which keeps track of resource utilization by

guests. and provides mechanisms for revoking service. Accounting offers a solution to the

problem of laundered requests, where a guest performs malicious operations through a

privileged intermediary, and the Banker's revocation mechanism is useful in notifying all of a

guest's servers that the guest's privileges have been reduced.

Although negotiation is designed to reduce the probability of revocation, a hierarchical

recovery scheme is supported by the Butler as an aid to the application programmer in cases

where revocation does occur. The three recovery methods are warning, where the guest is

allowed to perform application-specific actions to free resources, deportation, where the

guest is transported to another site by Butlers, and termination, where the guest is simply

aborted.

A number of applications for the Butler are described: these fall into the categories of

information exchange, load distribution, and computational parallelism. A prototype Butler

has been constructed and used in a real application demonstrating computational parallelism,

and the prototype has also demonstralted the deportation of processes.
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Abstract

Abstract

-j As networks of personal computers are developed to replace centralized time-shared
systems, the need for sharing resources will remain, but the solutions developed for time-

sharing will no longer be adequate. In particular, the sharing of network resources is

complicated by issues of security and autonomy, since a network of personal computers may

be composed of nodes that are completely controlled by their owners.

To facilitate sharing in this sort of environment, an operating system component called the

Butler is proposed. As a host, the Butler is responsible for administering a sharing policy on

its local machine. This includes authenticating sharers, granting rights in accordance with a

locally established policy, and creating execution environments for guests. As an agent, the

Butler negotiates with hosts on remote machines to obtain resources requested by a client,

and performs authentication to discourage a remota host from exploiting the client.

To protect a machine from exploitation by a guest, the host Butler relies upon a capability-

based accounting system called the Banker, which keeps track of resource utilization by

guests, and provides mechani ,ms for revoking service. Accounting offers a solution to the
problem of laundered requestz, where a guest performs malicious operations through a

privileged intermediary, and the Banker's revocation mechanism is useful in notifying all of a

guest's servers that the guest's privileges have been reduced.

Although negotiation is designed to reduce the probability of revocation, a hierarchical

recovery scheme is supported by the Butler as an aid to the application programmer in cases

where revocation does occur. The three recovery methods are warning, where the guest is

allowed to perform application-specific actions to free resources, deportation, where the

guest is transported to another site by Butlers, and termination, where the guest is simply

aborted.

A number of applications for the Butler are described: these fall into the categories of

information exchange, load distribution, and computational parallelism. A prototype Butler

has been constructed and used in a real application demonstrating computational parallelism,

and the prototype has also demonstrated the deportation of processes.
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Introduction

Chapter 1
Introduction

As computer systems evolve away from central, shared facilities to distributed,

autonomous, personal machines, the need for communication and cooperation between

users will remain. This dissertation addresses the problems of sharing resources in a network

of personal computers.

1.1. Background

Within the short history of computers, several modes of computer use have evolved in

accordance with rapidly changing technology. Early computers were expensive, and efforts

were made to achieve a high utilization of these costly resources. These efforts led first to

simple batch systems that process programs and data prepared off-line. Later developments

led to multi-programmed systems that achieve still higher utilization of the computer's

components by overlapping computation and input-output operations. Experience with multi-

programming led to the development of time-sharing, which allows greater interaction

between the computer and its users. Time-sharing was effective because large mainframe

computers were the most economical machines in terms of instruction executions per dollar,

but were far too large and expensive to be dedicated to a single user. These changes in the

way computers are used have been accompanied and partially motivated by falling hardware

costs. The trend has been to provide computer users with more sophisticated tools and

greater computing power in an interactive setting.
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1.1.1. Personal Computers

More recently, personal computers have become an attractive alternative to time-sharing.

For now, we will define a personal computer as one in which the standard mode of operation

is to support a single user. There are currently several factors favoring the use of personal

computers. For example, large scale and very large scale integration have made small

computers competitive with mainframes, using the metric of instruction executions per dollar.

In addition, personal computers can support very high data transfer rates between the

processor and input/output devices. This allows more effective interaction through high-

resolution display screens, pointing devices, audio input and output, and other forms of man-

machine communication. Also, a dedicated computer can provide predictable response

times to user requests, unlike a time-shared system where the response time usually depends

on the current load or backlog of requests from other users. Another factor is that a

collection of personal computers is more reliable than a central machine because a single

personal computer failure will affect only one user, whereas a failure in a central time-shared

computer will affect all users. Similarly, maintenance of a time-shared computer frequently

requires that all service be temporarily halted. Finally, personal computers have some

attractive properties from the standpoint of information security and protection. Users can

exert more control over their computing environment since they are not sharing their primary

resources with others. In particular, users can run various operating systems or write their

own microcode without threatening the security of other users.

The capabilities of personal computers are greatly enhanced when they are connected by a

data communication network. Computers can then facilitate interpersonal communication

through electronic message services. A network also supports cooperation between users on

large projects where programs and data are shared, and networks allow a community of users

to share expensive resources such as printers and special.purpose high-speed processors

and archival memories. Thus, a likely general architecture for the next generation of

computer sysiems is a network of personal computers, with a few shared resources accessed

via the network.

L. . ... . ... . . I I " I I "
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1.1.2. Resource Sharing

A network of personal computers has the characteristic that its resources are distributed.

In spite of the advantages of distributed resources that are described above, a network of

personal computers also has some disadvantages. For example, a user may need to access

data that is only available on a remote machine. Security may dictate that the data cannot be

transferred in whole to any other machine' thus, the user must use a remote processor to

access the data. Another disadvantage is that the physical distribution of resources may not

match the distribution of the demands for service. Thus, some resources may be idle while

others are overloaded. Finally, even though a personal computer may have significant

computational capabilities, its power is less than that expected of a large mainframe

computer. As a consequence, a network may collectively have tremendous computing

power, but its computing resources are distributed. Programs that might be practical on a

time-shared mainframe computer may be inappropriate for personal computers because of

the amount of computation involved. All of these problems can be alleviated by resource

sharing, as described below.

1.1.2.1. Sharing for Information Exchange

The first problem is related to data security. The standard solution to the problem of

controlling data access in a centralized operating system is the use of protected subsystems

[Saltzer 75). However, in a network of personal computers, there is no central trusted

operating system, so the way to control data access is to keep the data on the local machine

and perform all data operations locally. The owner of the data must then share his machine

with users who need to access the data, and in order to protect his data, the machine owner

restricts what borrowers can do with his machine. Examples of this type of sharing are

appointment-making programs, electronic mail programs, and local databases.

1.1.2.2. Sharing for Load Distribution

The second problem is an imbalance of load on the network of machines, and sharing can

be used to distribute the load more evenly. For example, a user may want to run a non-

interactive program such as a compiler or text-formatter as a background job while he is using

a highly interactive program such as an editor. If there are idle machines available on the

network, it may be advantageous to use the remote machine to execute the background job to

improve the responsiveness of the editor.
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1.1.2.3. Sharing for CP mputational Parallelism

The third problem is that computing resources are distributed. To obtain more processing

power than is available at any given personal computer, some degree of sharing is necessary.

The ability to share these resources makes new applications feasible since the computing

power available through sharing will always be greater than that available on a single

machine. (Note that for this reason, faster machines do not obviate the desirability of

sharing.) Examples of applications that can benefit from this type of sharing are computer

graphics, image and signal processing, design-rule checkers for computer-aided design

systems, and simulation of physical systems.

1.2. Examples

This section introduces some of the problems of resource-sharing in a fairly informal way

through the use of examples. The examples correspond to the three uses of sharing

enumerated in the previous section, and will serve to motivate the solutions presented in the

remainder of this dissertation.

1.2.1. Terminology

Before presenting the examples, it will be helpful to introduce some terminology to name

various objects. First, any resource sharing will necessarily involve at least two machines.

The machine that belongs to the borrower of resources is called the local machine. Any other

machines are called remote machines. (In this chapter, the term machine will be used rather

loosely to mean not only hardware, but micro-code and software responsible for executing an

application program. For the time being, an operating system is considered part of the

machine.) A program that executes on the local machine is referred to as the user. In these

examples, the user will borrow resources from a remote machine to execute a process. That

process is called a guest of the remote machine. The owner of the remote machine may also

execute processes on his machine. These processes are called residents. Figure

1-1 summarizes the relationships between these terms. There is no logical difference

between the user and a resident; they represent two views of the same sort of object.
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network

resident
process

user 1
process

resident
process

guest 2

local machine

Figure 1-1: Terminiology for resource sharing.

1.2.2. A Personal DataBase

In the first example, the owner of a remote machine has decided to implement a small

personal database that contains daily appointments. The database is stored only on the

remote machine because some of the data is private and the owner does not trust other

machines. However, the owner would like to allow limited, controlled access to his database

so that his colleagues can make appointments and schedule meetings. To avoid giving users

direct access to his database, the owner writes a program that will run on his machine and

make appointments for remote users. In effect, the owner has used the physical security of

his machine to build a protected subsystem [Saltzer 751.

There are several problems raised by this example. First, there must be some means by

which a user can invoke the remote appointment program. Second, the owner may want to

restrict access to certain users, so some means of authenticating a user's identity is

necessary. Finally, the owner may want to control when users are allowed to use his machine

or restrict the priority of some users. This last problem illustrates the concept of autonomy. It
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is difficult to make any guarantees to a guest when the guest ultimately has no control over

the machine. This problem is discussed further in Section 2.1.2.

Once solutions to these problems are found, the designer must find an appropriate way to

implement them. All of these functions could of course be built into the appointments

program, but a more general approach is to build an invocation mechanism, authentication

protocols, and access controls into a separate piece of software that could then be used by

similar applications.

1.2.3. Remote Compilation

Consider the simple case of a user with many compilations to perform. Perhaps the user

has just changed the definition of a low-level data-structure that is used throughout a large

program, and many modules must be recompiled. It is desired to spread the compilation

across several machines. The first problem is to find machines having some idle resources

that can be borrowed. The network is used to locate and interrogate remote machines, and

some form of negotiation takes place to determine if the remote machine is willing to perform

the compilation. There are many issues to be addressed in negotiation:

1. The Sharing Policy. The remote machine must know what resources are
available to share. Also, the owner of the remote machine may wish to make
different resources available to different users, and the amount of available
resources may be a function of the current state of the machine. Normally, the
owner would want his residents to have priority over guests.

2. Configuration Specification. Similarly, the host needs to know what resources
are required to execute the guest. In this case, the user only wants resources to
perform a compilation. The host is more likely to grant such a request than (for
example) a request to load a new operating system. In general, the user needs to
specify a configuration that names the necessary resources and provides details
of the execution environment of the guest.

3. Negotiation and Authentication. A protocol for negotiation must exist. The
identities of each machine (or machine owner) must be authenticated, and the
resource requirements of the guest must be presented and compared with the
resources that are available.

Assuming the remote machine agrees to compile programs, a compiler has to be invoked,

sources need to be retrieved over the network, and the resulting compiled programs must be

returned to the user. Given enough idle resources, many compilations could be performed in

parallel on a number of machines.
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1.2.4. Distributed Program

In our next example, the user wants to construct a large program that executes in parallel

on many machines. One of the problems faced by the designer of such a program is how to

handle machine failures and resource revocations. The problem did not exist in the previous

example because the user could restart his remote compilation if it failed. In the current

example, the user will need to handle many exceptional conditions to avoid restarting his

program. Since he is using many machines, exceptional conditions are more likely to arise.

This example raises two problems. First the programmer needs a model of machine failure

and resource revocation. To begin with, a machine failure can be modeled as a particular

kind of revocation: all use of resources on the failing machine are instantly revoked. (Usually,

some timeout period must elapse before the failure can become known.) Less severe forms of

revocation can be used in cases where a remote machine owner wants to reduce the

resources available to a guest. The second problem is to provide assistance to the

programmer in recovering from the revocation of resources. Resource revocation is

discussed in Chapter 5.

1.2.5. Other Issues

We have discussed a number of resource-sharing issues in the context of three examples,

but several topics remain. For the most part, these are related to the protection of the

resource lender.

1.2.5.1. Protection

What happens if the user's source program exhausts the resources of the host's machine?

In the case of a compilation, there are some ad hoc solutions to such problems. The resource

requirements might be guessed from the length of the source code, and the compiler might be

designed to abort if its resource requirements exceed certain limits. In this approach, the

remote machine would retain control over the situation by using a local, trusted copy of the

compiler. On the other hand, it may not be wise to trust a compiler to control carefully its use

of resources. Furthermore, the solution is not general enough; it cannot handle situations

where the guest's program is not trusted.

Better protection mechanisms are available. Let us assume that nothing is known about
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the application program; it would be foolish to turn such a program loose in an unprotected

environment, so at the very least, there must be protection equivalent to that provided by

time-sharing systems. The remote machine then acts something like a time-sharing system; it

creates a process in a separate protected address space for the application program.

Depending on the requirements of the application, the host may make a file system or other

services available to the application. This can be accomplished in the same manner that

time-sharing systems allow protected access to system resources.

In the context of personal computers, a protection problem arises that is not present in

time-shared systems: the guest is not secure against the remote machine. In a time-shared

environment, the user is not protected from the operating system, but there are usually

reasonable grounds for trusting it. In the case of a remote personal computer, the operating

system is installed and controlled by an individual who may not be trustworthy. In general,

completely protecting the guest from a remote machine is not possible. The options will be

discussed in greater detail in Chapter 3.

1.2.5.2. Rights Revocation

In some cases a machine owner may want to change his policies, so that a guest is no

longer welcome to borrow resources. For example, the owner may arrive at his machine in

the morning to find that a program that was started the previous evening is still running.

Clearly, there must be a way of regaining control over one's own machine. The general

problem is one of rights revocation. In revoking rights, one can choose actions that favor the

guest, the owner. or fall somewhere between these extremes. One could, for example, reboot

a machine, but this would abort the guest. The user would be burdened with the task of either

restarting his program or recovering from the loss of the guest Alternatively, the machine

owner could be asked to wait while the guest is reconfigured or moved to another machine.

This is much cleaner from the borrower's standpoint, but may be objectionable to the remote

machine's owner. The problems of resource revocation are discussed further inSection

2.3.1.
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1.2.5.3. Laundered Requests

Suppose that the user is malicious and has the goal of controlling or at least crashing the

system on the remote machine. Furthermore, assume that the guest is an arbitrary program

specified by the user. If the user's application program is executed in a protected address

space, there is not much chance that it can directly penetrate the remote system's security;

however, the guest may be able to communicate with programs that have greater privileges.

For example, the operating system kernel can create new processes, and the file system can

access the disk directly. If there are any bugs or design errors in these privileged programs,

the guest may be able to use them as intermediaries and take over the system. For example, a

bug in an operating system kernel might allow a guest to access memory that would otherwise

be protected. Alternatively, the guest may be able to crash the system by overallocating

certain resources until no more disk space is available.

This is referred to as the problem of laundered requests, because the identity of a request is

made to appear "clean" by passing a request through a system program. The problem of

laundered requests can be solved by keeping track of the origin of each request for service.

When a resource is allocated, it is associated with some guest, and the allocator can test if the

guest has exceeded any allocation limits. The problem could be solved on a resource-by.

resource basis, but the solution is simpler when there is a more centrally managed source of

resource accounting.

In Chapter 4, a server called the Banker is described which performs accounting services

for real or abstract resources and allows accounts to be held by entities called customers.
The purpose of the Banker is to help components of the operating system keep track of the

resources that are allocated to a given user. The Banker can be used for fine-grain control of

resource use and for controlling privileges which are viewed as abstract resources. It should

be noted that the Banker concept is applicable to time-sharing systems as well as to personal

computers.
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1.3. Related Work

A large amount of work has been done in the area of security. For example, techniques for

security in computer systems are surveyed by Saltzer [Saltzer 75], and a survey of encryption

techniques is presented by Popek (Popek 791. Needham and Schroeder [Needham 78] also

discuss various protocols for obtaining authenticated communication using both

conventional and public-key encryption. One application of these techniques in an

operational system is the Liberty Net [Nassi 82] in which naming and authentication services

are provided by a single secure server. Liberty Net uses a message-based communication

system similar to the one to be described in this dissertation.

Much less work has been done that directly relates to the problems of resource sharing

discussed in this dissertation. Svobodova, Liskov, and Clark [Svobodova 79] consider a

distributed system composed of autonomous nodes, but focus on primitives for distributed

commercial applications rather than on the sharing of resources in the manner I have

considered. Further work is reported by Liskov [Liskov 82], who describes an extension to the

programming language CLU. Liskov's research is thus concerned with the problem of

actually programming a distributed application, while this dissertation addresses problems of

obtaining and controlling rights to share resources.

Shoch and Hupp [Shoch 82] describe the "worm" programs implemented on Xerox Alto

computers. A worm is a distributed program composed of segments that survive machine

crashes and reboots by maintaining copies on other machines. Essentially no protection is

provided and there is no mechanism for revocation of resources in a graceful manner. In a

similar study, Ball [Ball 81] implemented a fork operation that locates an idle machine and

forks a job by copying memory from one Alto computer to another. No further work has been

done on either of these projects. (Shoch 81, Ball 811

While the experiments with Alto computers were oriented toward distributed processing,

the issues of sharing data and programs were explored in the National Software Works (NSW)

project [Millstein 77, Forsdick 78). The NSW presents users with a uniform interface to

various time-sharing systems on the Arpanet, and is primarily concerned with the user

interface. Sharing is motivated not by an integrated environment, but by the incompatibility of

software tools written for various time-shared machines.
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The NSW is constructed in a modular way. its principal components being Front End, Works

Manager, Foreman, and File Package processes. On a typical application of the NSW, a user

desires access to a software tool, say a compiler, on a remote machine. To compile his

program, the user types a command to his Front End. which serves as his interface to other

NSW components. Since the user's command requires an NSW resource (the compiler), a

Works Manager process is created. Works Manager processes maintain global information

about users, the availability of resources, and the state of all current NSW transactions. In

this case, the Works Manager process will find or create a Foreman process to handle the

user's compilation. Foreman processes serve as interfaces between software tools and other

NSW components. If the user's request involves a file access, File Package processes are

invoked to transfer the file to the proper machine and to transform the file data to the proper

format for use by the intended software.

The NSW differs from the system proposed in this dissertation in several ways. The NSW is

logically centralized, so resource allocation decisions are made centrally. In addition, the

NSW does not allow direct access to the host operating systems that is built upon, so each

application must be interfaced individually to the NSW. Finally, the centralized nature of the

Works Manager requires users to trust and depend upon the correct functioning of a remote

machine, and this reduces the autonomy of NSW hosts.

Another system that supports resource sharing is the Customer Information Control

System/Virtual Storage facility (CICS/VS), a product of IBM [Eade 77, IBM 79]. CICS/VS was

originally developed to simplify the programming interface to terminals in on-line terminal

applications, but in later versions of CICS/VS, the notion of terminal was replaced by the

more general one of logical unit, which can correspond to a terminal, computer, or some

other device.

The main function of CICS/VS is to supervise transactions that are originated by logical

units. CICS/VS includes support for concurrency in transaction processing, buffer

management, the loading and execution of application programs, communication with logical

units, and file access. Since one or more logical units may be computers, CICS/VS can

support the construction of distributed transaction processing systems, and is therefore

similar in intent to the work by Svobodova, Liskov, and Clark mentioned above.

The Resource Sharing Executive (RSEXEC) (Thomas 73, Cosell 75. Forsdick 78] comes
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closer to exploring the issues addressed by this dissertation. RSEXEC is a network operating

system designed to help users of TENEX systems share resources with other TENEX sites on

the ARPA network. The general approach of RSEXEC to the resource-sharing problem is to

make network resources available through the existing operating system interface.

An important component of RSEXEC is its distributed file system, which allows uniform

access to files regardless of their locations. The existence of multiple hosts allows RSEXEC

to maintain multiple copies of critical files, a service not available on the single-machine

TENEX system. To make file location transparent to user programs, RSEXEC intercepts user

program calls to the local operating system [Thomas 75], and if the request involves a foreign

host, RSEXEC directs the service request to a server process at that host.

RSEXEC server (RSSER) programs execute on each host supporting RSEXEC. An RSSER

program responds to requests from other machines to perform file access, user status lookup,

and other functions. An extensible protocol is used to govern communication between

RSEXEC and RSSER programs.

In RSEXEC, hosts are autonomous in the sense that a failure in one host will not cause a

failure in another; however, hosts cooperate by exchaniging status information, and users

trust remote hosts not to divulge passwords and other information. This is appropriate for a

network of time-shared computers; however, in this dissertation we will consider systems

where individuals control their personal machines, leading to the need for even greater

autonomy and less trust between hosts. In addition, we will attempt to support a wider class

of resource sharing applications by giving users more direct access to network

communication facilities and to resources on remote hosts.

Several studies of the scheduling and negotiation aspects of resource sharing have been

made. An example of a computer network intended to support resource-sharing among

similar machines is the Distributed Computing System (OCS) [Farber 73]. Computers in DCS

are not personal computers and are used to support a time-sharing environment, so

scheduling becomes an important issue. Resources are located by broadcasting requests to

resource-manager processes that then return bids. A request to use the resource is sent to

the lowest bidder. Bids are not binding, and a resource manager gives away rights to the first

process that asks for them. This may lead to a second round of resource requests and bids.

Another approach to negotiation is Smith's contract net protocol [Smith 80]. This work is
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oriented toward distributed artificial intelligence problem-solving programs in which

application-dependent knowledge is used to schedule subtasks. One of the goals is to make

better global resource-allocation decisions in a distributed fashion. The scheduling and

negotiation strategies of DCS and Contract Nets will be compared to our work in Chapter 5.

More recent work on scheduling has been performed by Casey [Casey 81 ], whose goal is to

provide a time-sharing environment using a network of computers. The basic approach is to

describe computations using a list of required segment capabilities, and the processing

element that is selected to perform the computation is the one that can most easily acquire

the necessary capabilities. The selection procedure also takes the processing load of each

computing element into account, and several strategies to achieve load-balancing are

described and evaluated using simulation studies.

Most of the references above do not address the problems raised by a network of

autonomous nodes. However. in the design of tle distributed database R', autonomy is an

important issue [Daniels 82, Lindsay 801. In R*, data is partitioned in such a way that

permission to access local data is always granted locally: however, the local system trusts

remote systems to correctly identify users (presumably for efficiency). Since R° is a

specialized system, it can provide even finer control over access rights than can a more

general system such as the one described in this dissertation. On the other hand, R* is only

concerned with shared access to stored information rather than the more general problem of

sharing arbitrary resources.

Another aoproach to data sharing in a network has been designed by Gifford [Gifford 81].

Unlike RO, in which security depends upon trusted database managers, Gifford's approach

depends only upon encryption for protection, allowing shared, insecure machines to be used

for data storage. In fairness to R*, it must be mentioned that Gifford's approach provides a

functionality on the level of a file system, while R * is a powerful relational database system.

1.4. On this Dissertation

This chapter describes the need for resource sharing in a personal computer network and

introduces many of the problems involved in sharing. The next chapter describes our

approach to the problems of resource sharing, and presents solutions to the problems raised

in this chapter, but at a fairly shallow level of detail. For the most part, the remainder of the
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dissertation serves to elaborate what is described in the next chapter. In Chapter 3, we will

examine low-level security and protection issues, including software certification, secure

network communication, and protocols for authentication and authorization. In Chapter 4, we

will describe the Banker, an operating system component that performs accounting to restrict

or control the resources used by guests. In Chapter 5, we will return to the Butler to discuss

protocols for negotiation and mechanisms for revocation. Having examined the

programmer's interface to the Butler, we will consider the problems of a user interface to

support resource sharing in Chapter 6. Finally, Chapter 7 contains an evaluation of the

design presented in Chapters 2 through 6, a report of some experimentation, and my

conclusions.

1.4.1. Relation to Spice

The research reported here is motivated by the Spice project at Carnegie-Mellon University

[Ball 82], but this dissertation is not specific to Spice except where explicitly noted in the text.

In fact, considerable effort has been made to make this work independent of Spice wherever

possible.

In some cases, however, it is desirable to apply ideas to a specific system. This allows one

to see the effect of design decisions more concretely, and often raises problems that are not

apparent at a more abstract level of design. I have used Spice as a target system in which to

apply and evaluate parts of the design.

1.4.1.1. Warning

The reader is warned that this dissertation is not a document about Spice. In some cases,

components of Spice are described with simplifications or omissions to address the topic at

hand more clearly. The Spice project is currently under development, and the design will

certainly evolve as knowledge is gained from experience with the system.

In particular, the design for the support of resource sharing as described in this dissertat,

is intended to be applicable to Spice, but the full implementation has not been constructed,

and some changes will be required to accommodate the particular characteristics of Spice.

For example, the Spice authentication server is more specialized than the authentication

server described in Chapter 3. This will have some impact upon the protocols for

authentication and negotiation that are described in Chapter 5.
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1.4.2. Current Status

At the present time (December 1982), a stand-alone system for Spice software development

is operational on Perq computers. The system includes an operating system kernel, Accent,

that supports multiple processes, each with a protected 32-bit virtual address space. Accent

also provides a protected message-based interprocess communication (IPC) facility. Other

components of the system are a compiler, editor, linker, file system and utilities, process

manager, command interpreter, debugger, and a process to manage text and graphics input

and output. At this time, shared files must be kept on a central time-shared computer, which

is accessed over an Ethernet local network.

Work is now proceeding along several fronts to enhance the system. First, a network

server has been implemented that extends the IPC facility across the network, and is in use on

an experimental basis. A shared file system for Spice that includes servers for authentication

and authorization is now in the early stages of implementation. Also at the implementation

stage are several facilities to enhance the user interface, including the environment manager,

forms interpreter (these are described in Chapter 6), and an improved command interpreter.

A prototype facility for resource sharing has been demonstrated by the author and is

described in Chapter 7; however, a complete facility as described in this dissertation has not

yet been implemented.

1.5. Summary

Economic and technological factors combine to make networks of personal computers an

attractive alternative to time-shared mainframes. Although the owner of a personal computer

has (by definition) his own computer, there are several reasons for sharing computer

resources. Computers may be shared to enforce the protection of data, to take advantage of

idle resources, and to achieve higher rates of computation through parallelism.

A number of requirements associated with resource-sharing have been identified:

1. Invocation. There must be some means of starting a program or operation on a
remote machine.

2. Access Control. The invocation mechanism must grant access to resources
selectively.

. .- [ . I1 . ' .. . . . . .. . . . ... I I . ... . . .. .. .. .
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3. Authentication. For security purposes, the identities of users must not be
forgeable when transmitted to a remote machine.

4. Autonomy. The owner of a machine must have control over that machine. In
particular, this means that the owner can control the sharing of his resources.

5. Configuration specification. Users must be able to specify the resource
requirements of guests.

6. Negotiation. A protocol must exist whereby the user can negotiate with the
remote machine to borrow resources.

7. Remote machine protection. The remote machine must prevent the guest
from taking control,

8. Guest protection. The guest should be secure against attacks by a malicious
owner at a remote machine.

9. Laundered requests. Guests must not be allowed to use privileged programs
as intermediaries to acquire unauthorized resources or access to information.

10. Resource revocation. Users and guests must handle machine failures and
revocation of resources.

The remainder of this dissertation explores ways of satisfying all of those requirements

within a single integrated system. We will begin in Chapter 2 by introducing an architecture

for resource sharing referred to as the Butler paradigm.
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Chapter 2
The Butler

The Butler is an operating system component that facilitates resource sharing. In this

chapter, we will reexamine some of the resource-sharing issues described in Chapter 1 and

see how they affect the Butler design. The chapter concludes with a presentation of several

Butler applications.

2.1. Resource-Sharing Issues

Before the problems inherent in resource sharing can be fully appreciated, some more

characteristics of personal computer networks must be examined. These characteristics

differ sharply in certain areas from those of time-sharing systems, and because of these

differences, new solutions to the sharing problem are necessary.

2.1.1. Protection and Security

Most mainframe computer systems are physically secure (or at least they are assumed to

be). Only authorized, trusted personnel are allowed access to the physical machine, and the

typical user can only access information through an operating system interface that protects

information from unauthorized access. Operating systems typically allow many users to share

such a machine while protecting each user's private data, and the current state of the art

[Wulf 74, Organick 72] allows users to be highly selective in their ability to grant authority to

other users. However, these techniques rely on the machine being physically secure: if it is

not then the software security can be compromised. This could be done by halting the

machine and examining the contents of memory, for example.

On the other hand, personal computers might be located at the point of use, in an office or

home. If the owner is the only one who has access to the machine, then it might be
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considered secure against everyone except the owner. In addition, if the owner is the only

user. then there is no sharing and no special software protection is required. From this point

of view, personal computers have advantages over time-shared computers in the area of

protection. The user does not even need to trust the operating system entirely, since the

network is the only way information can be transmitted. In addition, the user controls physical

access to his machine, rather than trusting the management and operating system of a time-

sharing system.

If, however, personal computers are shared by several users, then protection and security

become issues. One goal of this dissertation is to explore these problems; it will be seen that

different assumptions about the physical security of machines will lead to varying levels of

protection.

2.1.2. Autonomy

Another important characteristic of personal computers is that users are generally given

almost complete control over their machine. This characteristic, called autonomy, has two

advantages for the user. The user can form stable expectations of the available computing

power, since he can regulate the load on his machine. Users of time-shared machines have

not tended to form stable expectations of computing resources since the level of service in

most systems depends upon the number of users and the tasks they are performing. The

second advantage of autonomy is the ability to run whatever programs, operating systems, or

microcode the user desires. This is possible when there are no sharers whose security might

be threatened.

The notion of autonomy follows almost directly from the protection characteristics

discussed above. If a computer is physically unprotected from a user, then there is little that

can be done to prevent the user from gaining control of the machine. Given this state of

affairs, it seems reasonable to recognize autonomy of users as an inherent property and seek

to exploit that property wherever possible.

The property of autonomy and the desirability of stable expectations might at first seem to

be incompatible with resource sharing. There are several reasons to believe that this is not

the case. First, in a network of personal computers, one can expect many machines to be

idle. When a machine is idle, the concept of stable expectations is not meaningful, and there

, -- Msd
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is no reason (aside from protection issues) that an owner would not want to share his idle

resources. Second, users can cooperate by sharing resources. An example has already

been given in which sharing is necessary to implement a protected subsystem. Another

example of cooperating users is a project that requires the computational resources of

several machines operating in parallel. In an institutional setting, some degree of sharing

might be legislated to improve productivity.

Thus, it can be seen that a problem that must be addressed is how to control and regulate

sharing. In time-sharing systems, common goals are to maximize throughput, provide quick

response, or provide a "fair" allocation of limited resources. In a network of personal

computers, the goal of autonomy dictates that each user must be able to decide to what

extent his machine is shared. For human engineering reasons, the user should be able to

create policies that constrain sharing. These policies must then be administered by some

component of the operating system.

2.1.3. A Digression to Consider an Alternative

At this point, the reader might wonder what would happen if some of these assumptions are

incorrect, or become invalid due to some technological advances. One could conceive of a

personal computer system in which machines were physically secure from everyone including

their owners. To achieve this, the machines could be locked inside secure enclosures or

moved into a secure room apart from the users' consoles. Alternatively, one might be willing

to assume that owners are either honest or lack the technical skills required to access

information that is "protected" by software. In either case, protection problems are not as

difficult to solve, and the autonomy assumption might not be so necessary, since the

protection of machines from users allows the system designer to determine the degree of

control each user has over his machine.

A system with protected machines is in many ways like a time.sharing system, since access

restrictions can be placed even upon machine owners. The difference between this

hypothetical personal computer system and a time-sharing system is that in the personal

computer system, users may be given greater control over their machines than would be

appropriate if they were using a time-shared mainframe computer. (A network of computers

might also have different performance characteristics than those of a central computer

system.) The range of autonomy can extend from none, which is equivalent to a distributed
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time.sharing system, to complete, which means that users can determine how all of their

machine resources are used. The Eden system [Almes 80] and the Cambridge Ring [Wilkes

791 are examples of networks that fall into this range between fully autonomous personal

machines and a completely shared central facility.

In this dissertation, this sort of system is not specifically considered for the following

reasons. First, it is felt that protection is a real problem that should receive serious

consideration. Fortunately, many aspects of the sharing probiem are independent of

protection so the consideration of protection issues will not lead us down a completely

different path of research. Second, the cases where autonomy is eliminated have been

studied extensively under the topic of time-shared systems. The implementation of a time-

sharing system on a network of personal computers is perhaps interesting and certainly raises

some new problems, but they will not be addressed in this dissertation. Finally, as argued

above, the protection characteristics of most personal computer systems dictates that

machines be considered autonomous. In summary, this dissertation is concerned with

resource sharing in a network of personal computers, not in distributed time-sharing systems.

2.1.4. Practical Considerations

The principal problems of resource sharing in the context of personal computers are

protection and autonomy, however other problems must be addressed before sharing

becomes practical. First, there must be software support for sharing, which might be

regarded as an extension to an operating system, through which programs can obtain

resources on other machines. Second, a user interface must be constructed to support

sharing. Users should be able to control easily programs executing on several machines.

Finally, a user must be able to change the set of policies that determines how his machine is

to be shared.

2.1.4.1. Support for Sharing

Sharing can be supported in at least two ways. First, conventions and protocols which are

obeyed by all machines on the network can simplify the task of borrowing resources. Second,

most of the details of borrowing resources and executing programs remotely can be hidden

from the programmer. High-level operations should be provided to request and use

resources.
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2.1.4.2. User Interface

A common form of resource sharing is likely to be of the type illustrated in Section 1.2.3,

that is, the remote execution of application programs. The added complexity of running a

program remotely must provide only a small disadvantage compared to the performance

advantages: otherwise, users will always execute their programs locally. In addition, it should

be possible to execute most programs remotely with no changes to the code, and remote
programs that interact with the user should use the user's local display and keyboard.

2.1.4.3. Policies

The problem of controlling one's personal computer has already been mentioned. Any

facility to support resource sharing should provide the mechanisms for sharing without

dictating how these mechanisms are used. For example, a machine owner should be able to

decide not to share his machine at certain times. Control is provided through policies which

dictate how sharing may take place. By decoupling policies from mechanisms, the behavior

of the system can be modified simply by rewriting policies, which is expected to be much

simpler than altering the sharing mechanisms.

It should be simple for users (not just the implementors) to change policies. Two

approaches might be taken to help users implement policies. One approach is to represent

policies as programs (procedural knowledge) in some appropriate language. In this case, a

policy interpreter would be responsible for executing the programs. Another approach is to

represent policies as data (declarative knowledge) which is consulted whenever a policy.

related decision must be made. This latter technique is advocated because it is simple to

implement and easy to understand, although it is not as powerful in some cases. Policies are

discussed further below.

2.2. The Architecture of the Butler

Our approach to resource sharing is based on the concept of the Butler1 , an operating

system component that h.alps users to borrow resources and supervises guests. A Butler

program runs independently in each personal computer.

IThe Butter is so named because it manages a personal machine on behalf of the owner in a way that is loosely
analogous to the way a (human) Butler manages his employer's household.
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Although in principle the Butler's functions could be entirely implemented within

application software, a number of reasons justify the existence of the Butler as a separate

software entity:

1. The Butler provides a single point from which users can control their system.
This permits the enforcement of policies that relate to the global state of the
machine.

2. One of the functions of the Butler is to enforce security. It protects the machine
by supervising potentially malicious software of other users. The Butler should be
a trusted piece of software that exists as a separate entity from the applications it
supervises.

3. Furthermore, if the Butler is distinct from the applications it supports, then the
Butler will be used in a variety of circumstances, and users will be able to gain
confidence in its security. If each application reimplemented software that is
critical for protection, then errors would be more likely, and users would be less
likely to share their machines.

4. The Butler is more than a set of conventions or subroutines. It serves as a
general model for the top-level structures of distributed programs. The Butler
paradigm is thus a conceptual tool for the programmer.

Because of the principle of autonomy, a separate instance of the Butler is executed by each

computer. Butlers are better thought of as independent, but cooperating programs, rather

than as a single distributed program.

Since users are free to execute any program, they can implement their own Butlers if

desired. Given the difficulty of a Butler implementation, it is unlikely that more than one Butler

will exist.

2.2.1. General Design

The purpose of the Butler is to allow clients to invoke operations on remote machines. In

addition to simply providing the capability of running a program remotely, the Butler allows a

client to invoke arbitrary services, such as the program for making appointments in Chapter 1.
In this way, the Butler supports the sharing of information as well as resources. Other

applications are discussed at the end of this chapter.
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2.2.1.1. Granularity Issues

The Butler will provide the user with a high level of support that addresses all of the

problems raised in the examples given earlier. The Butler is therefore a rather "heavyweight"

mechanism. To avoid a large overhead, it is intended that the Butler be used to initiate

operations and then intervene only when necessary to handle exceptional conditions. There

remains a certain amount of overhead for protection, but this overhead will be present in any

design.

Even the overhead to initiate an operation may be too great if a client wants to invoke many

small operations remotely. For example, consider the task of performing many small

operations on a remote database. Although the Butler mechanisms are too expensive to

invoke on every remote operation, the Butler can be used to establish a connection to a server

that handles the small operations without further intervention by the Butler. The initial cost is

then amortized over many transactions. which may be based upon efficient communication

primitives such as remote procedure call [Nelson 811 or remote references [Spector 821.

From the discussion above, it should be clear that the Butler is not an interprocess

communication facility, nor is it a form of remote procedure call. The Butler is a higher level

program that must be constructed on top of lower level communication or invocation

primitives.

2.2.1.2. Generality

In this dissertation, the design of the Butler is deliberately as general as possible. The goal

of the Butler design is to support many forms of sharing and to address many of the problems.

Once practical experience is obtained, some features of the Butler might be deemed

unnecessary, perhaps leading to a simplified design.

As in Chapter 1, some new terminology is necessary to refer to various participants of

resource sharing. The terminology presented below is an extension of that used earlier.
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2.2.2. Terminology

At least two machines, the local machine and the remote machine are involved in sharing

(see Figure 2-1). On the local machine, the program that needs to borrow resources, the

client, relies on the local Butler to perform the borrowing. In this role, the Butler is called an

agent. The agent communicates with the Butler on the remote machine which acts as a host.

The host creates one or more processes, called guests, on behalf of the client. Any program

that is sharing the remote machine (including another guest) is called a resident.

Agent
Butler

Guest Resident

Process

Remote Machine

Local Machine

Figure 2-1: Relationship between client, agent, host, guest, and resident.
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2.2.3. The Butler as Agent

The job of the agent is to locate a host with the required resources, negotiate with the host,

and invoke a service requested by the client. To borrow resources from a remote machine,

the client presents his agent with a request for some service. The service request specifies ii
the configuration required by the client. For example, the request for a compilation would

contain the name of the compiler, a list of machine resources, information for exceptional

condition handling, and perhaps a request to use the remote machine's file system.

The agent locates a suitable host and negotiates with it to obtain the required resources. If

the resources are not available, the agent looks for another host. When a suitable host is

found, the identity of the host is authenticated. (Authentication could also be performed

before the negotiation takes place, but this would make the search for a host slower. Only the

chosen host's identity needs to be verified.) The host then invokes the requested operation.

At this point, the agent's job is done unless exceptional conditions arise. The primary

exception that the agent handles is resource revocation. In some cases, the agent may be

able to locate a new host and deport the guest in a way that is transparent to the client and

guest.

2.2.4. The Butler as Host

The job of the host is to loan resources while protecting the interests of the machine owner.

When a request arrives from an agent, the host consults a policy database to determine

whether the resource request can be granted. If so, the host creates an appropriate

execution environment for the guest. In general, this means creating a new process and

supplying the guest with capabilities to access other components of the system, as specified

in the client's original re- iest. Normally, among these capabilities are network connections

to the client so that the guest and client can communicate directly.

After creating the guest's execution environment, the host stands by in case the guest

attempts to exceed the limits placed on its resource utilization. This will ordinarily be detected

by some component of the operating system. For example, t: e kernel will detect attempts to

address memory outside permissible limits or to fork too many processes, and the file system

will detect when disk page limits are exceeded. In any case, the host handles the exception.

The host's action can take one of several forms depending on what action was requested

during initial negotiations.
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The h ist also responds to changes in the policy database. A new policy may reduce a

guest's resource rights, so some resources may have to be recovered from the guest.

Revocation of rights is handled just as if the guest tried to exceed its rights.

2.3. Negotiation of Resources

Negotiation is the process of establishing the client's intentions and assuring that they will

be met. This allows us to formulate rules governing the behavior of programs, thus making

program behavior more predictable and easier to make correct. For example, negotiation can

assure a programmer that either his resource demands will be met, or a warning message will

be sent to a specified port. Negotiation also increases the likelihood that a guest will be able

to use resources effectively, improving the overall system performance.

2.3.1. Revocation of Resources

An important part of negotiation is the determination of how resources will be revoked if

that becomes necessary. Three methods are used to handle resource revocation. The first,

called warning, gives the guest a chance to perform application-specific recovery actions.

The second is deportation which is handled entirely by the host Butler. If all else fails,

termination is used to reccver all resources used by the guest.

2.3.1.1. Warning

The first method augments the guest's current resources by a set of warning resources and

notifies the guest of the change. For example, the guest may receive 5 additional seconds of

CPU time, and 10 additional disk pages along with a warning message. The 10 disk pages

would be added to the guest's current allocation to establish the new quota, regardless of the

initial one. The purpose of this revocation style is to give the guest the greatest amount of

flexibility in recovering from a loss of resources. The warning resources are finite because

the host cannot trust the guest to observe the warning. "
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2.3.1.2. Deportation

The second method is called deportation and will be discussed in detail in Chapter 5. The

goal of deportation is to provide a mechanism whereby resources can be reclaimed by the

host without harming the guest, but without giving the guest any control. Deportation

removes all processes created by the guest, as well as the environment created for the guest.

Since deportation is transparent to most guests, it is not necessary to add special recovery

software to most applications.

2.3.1.3. Termination

The third method aborts the guest process and sends an explanation to the agent. This

method is invoked if all else fails or if higher level revocation-handling mechanisms are not

requested.

Resources are also revoked if the host machine crashes. In this case no notice can be sent

by the host. but the agent is informed of the crash by the network server after a timeout

period.

2.3.2. Resource Specification

Before discussing negotiation, a more concrete idea of what is meant by the term

"resources" is required. A representation for a resource is also provided so that a client may

describe resource requirements to his agent, which uses the requirement specification to find

a suitable host.

2.3.2.1. Types of Resources

There are many resources in which the client may be interested. Most of them are

abstractions of the physical machine, such as disk pages, processes, or a share of the CPU,

but other resources relate to services, such as access to the local file system. Resources can

also refer to rights or expected behavior; for example, the right of a guest to receive a warning

message before the host revokes any resources is considered to be a resource.
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2.3.2.2. Data Types for Resource Specification

Several data types are designed for representing resources. First, all resources not related

to negotiation are grouped into a BasicRights data type. BasicRights is a collection of values

representing either numerical limits (how many of resource X) or boolean decisions2 (the right

to perform operation X). There are several operations besides the normal access functions to

read and write fields of BasicRights. Since resources are scalar quantities, addition,

comparison, difference, maximum, and minimum operations are possible.

GuestRights is a data-type that fully specifies a guest's rights, including revocation. One

field of GuestRights is a value of type BasicRights, and two additional fields specify if warning

or deportation is to be performed. If both rights exist, warning will be attempted first, and

deportation is only used if the warning is not heeded by the guest: that is, the guest attempts

to exceed even the warning rights. In the case that a warning is specified. an additional set of

BasicRights must also be included to specify the increment of resources required to handle

the warning.

Possible Ada type-specifications for the data structures discussed thus far are given below;

however, the simple representation suggested here for type BasicRights cannot be used to

represent dynamically created resources. The representation below is presented for

illustrative purposes only, and is just one of many possible strategies. We will treat the topic

of resource specification in greater depth in Section 4.2.

type BasicRights is
record

DiskPages: Integer;
NumProcesses: Integer;
Priority: Integer;
MicrocodeAccess: Boolean;

end record;

21 do not mean to imply that all boolean decisions must be implemented with bits. For example, the representation
of the right to use a server might be repres, inted by a string, etc.
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type GuestRights(Warning: Boolean) is
record

InitialRights: BasicRights;
Deport: Boolean;
case Warning is

when true = >
WarningRights: BasicRights;

when false = > null:
end case;

end record;

2.3.3. Negotiation

The client expresses his request to the agent in the form of two values of type GuestRights

and a specification of the operation to be performed. The first GuestRights value expresses

what resources the client wants. The agent searches for a suitable host; if the agent finds a

host offering these resources, the agent need not look any further. If the agent has difficulty

meeting the first resource specification. a client may be willing to accept fewer resources.

The second value of type GuestRilhts expresses the minimum acceptable amount of

resources.

The negotiation process is outlined in Figure 2-2. The agent sends the client's preferred

rights to a potential host. The host replies with a list of available rights and reserves those

resources until receiving a response (subject to timeout). The agent compares the host's

response to the client's request and either accepts or rejects the offer. Authentication is not

used on initial negotiations during which many potential hosts may be polled.

Client Agent Host
client's
request agent's

offer

accept/
reject

Figure 2-2: Negotiation between an agent and host.
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2.3.4. Host Search Strategies

The client has the ability to pass a host search list to the agent to specify which hosts to ask

for resources. In the absence of a search list, the Butler will find potential hosts through a

network name server. The client may also request deportation at any time, so that if a more

suitable host is found, a guest may be moved.

I do not propose the use of sophisticated search strategies or attempts to automate load

balancing. These are functions appropriate to a distributed operating system, and are beyond

the scope of the Butler. The possibility of implementing distributed operating systems at the

level above Butlers is not to be ruled out, however. For example, it may be desirable for

groups to optimize resource usage of the machines under their jurisdiction. The Butler

design allows for this, but does not directly support it.

2.4. Policy

If the host Butler is to negotiate with agents, it must know what resource rights to offer. In

this section, we will see how policies are used to control negotiation.

The Butler attaches two properties to potential users of a machine. The first property,

called locality, is local if the user is physically present at the machine site, and remote if he is

not. This distinction is useful because local users expect to use I/0 devices such as the

keyboard, screen, and pointing device. The second property is occupancy, which is true if

the user has rights to the entire machine, and false for users who are borrowing resources.

Typically, occupancy is true only for the owner of the machine.

The Butler's interface to the policy database is a function that takes a user's name and

properties of locality and occupancy, and returns a set of rights:

Policy: Userld x Locality x Occupancy -- Rights

The rights may also be a function of the current machine state, the time of day, and so on. An

occupant may also dictate one of two modes. Sharing mode allows the local Butler to host

one or more guests. Exclusive mode prevents guests from using the machine. Thus, sharing

can be temporarily denied without changing the policy database.

Because access to the database is made through an abstract interface, its implementation

is independent of the Butler's. The policy database can evolve without reimplementing the
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mechanisms provided by the Butler. The user's interface to the database is unspecified to

allow experimentation with different human interfaces.

In addition to the policy function, the interface between the Butler and the policy database

must include some way to notify the Butler when policy is changed. Upon receiving a change

notice, the Butler reevaluates the policy function for each guest on the machine. This avoids

the necessity of continuously reevaluating (polling) the function to keep policy enforcement

current.

2.5. Protection

This section presents ways in which unprotected programs can be attacked. The possible

sources of security threats are then surveyed and the methods of providing security are

described.

2.5.1. Types of Threats

An insecure system exposes users and their programs to a variety of attacks. A program is

called malicious if it uses unintended rights to access or manipulate another program or its

data. The act of using these unintended rights is called exploitation, of which there are

several forms.

2.5.1.1. Confiscation

First, a malicious program may read data or code belonging to another program, possibly

resulting in access to secret information. This is called confiscation, which may also be used

to acquire rights (capabilities) of the victim, leading to further exploitation.

2.5.1.2. Sabotage

A second form of exploitation is sabotage, in which information is manipulated by a

malicious program. Random manipulation of data can result in errors that are hard to detect

and may result in a failure of the sabotaged program. Sabotage might also be used to control

the victim's actions. For example, if a client makes decisions based on information received

from a guest, then manipulation of the information might be used to influence the behavior of

the client.
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2.5.1.3. Reneging

A malicious program can exploit an agent Butler and its client by offering services or

resources and then not honoring the offer. If the client is fragile, it may not be able to recover

from the revocation. At the very least, the client will experience delays due to recovery and

acquisition of new resources. This form of exploitation is called reneging.

2.5.2. Case Analysis of Threats

Before discussing protection methods, sources of potential protection violations must be

identified. The framework within which this design is placed identifies five principal domains

of interest: the client, the agent, the host, the guest, and the resident. The interesting

interactions will be discussed below.

2.5.2.1. Assumptions

It is assumed that a user can load a secure operating system that allows multiple processes

to run in separate virtual address spaces. It is also assumed that the user has the capability of

verifying at load time that his operating system is in fact an authentic one, and finally, we

assume that machines can communicate securely over encrypted channels. These

assumptions are justified here because we are interested in the security problems raised by

Butlers and resource sharing, and because they are likely to be met by any network of

personal computers where security is important. In Chapter 3, we will see how these

assumptions can be met using encryption techniques and a trusted authority.

2.5.2.2. Protecting the Client

If we assume that the client has a benevolent agent, that is, the machine has been loaded

with a secure operating system, then the client's security can only be threatened through the

guests which may interact with the client. If the guests are safe, then the client is also safe

(protection of the guest is discussed below). The client can protect itself against an unsafe

guest by limiting the rights granted to a guest, which can be accomplished by restricting the

environment in which the guest executes. The use of message-passing and separate address

spaces rather than shared objects for interprocess communication helps the client to

maintain firewalls against corrupted guests. An extremely suspicious client could supply the

guest with no rights except a communication path to the client. The client could then perform

(or refuse to perform) sensitive operations after checking to see if the requested operations

are permissible.
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2.5.2.3. Guest-Resident Protection

Guests and residents must be protected from each other, just as users of a time-shared

system must be mutually protected. The host prevents interaction between the guest and

resident through the standard use of separate protected address spaces. Furthermore, the

host Butler prevents either the guest or resident from monopolizing physical resources by

enforcing the machine owner's policies. The use of laundered requests has already been

described as a potential problem. This problem will be dealt with below in Section 2.6.

2.5.2.4. Protecting the Butler

The host protects itself from guests using the same mechanisms that are used to protect

residents. The only other threats to the security of a Butler come from other machines via

messages. since the local system is secure by assumption. Hence, the Butler must be

suspicious of all messages it receives. Since Butlers are autonomous, there are no global

states to be protected, and the Butler can treat all incoming messages as suggestions, acting

upon them only when the suggestions are consistent with local (trustworthy) data.

2.5.2.5. Protecting the Guest from the Host

Spice machines can be arbitrarily programmed by users, so it is impossible to provide

absolute protection for the guest. A malicious user can construct and execute a program that

mimics the Butler interface, but provides no protection for guests. Below, a scheme is

described that can be used to discourage such behavior. A few stronger schemes, which

require stronger assumptions, are then presented.

Authentication can play an important role in discouraging malicious behavior. If illegal

conduct can always be traced to the person who is responsible, few people are likely to

behave maliciously. A machine owner who allows a guest to borrow resources is responsible

for executing a certified copy of the operating system on his machine. If a violation of this rule

is detected, authentication allows the responsible user to be identified.

There are two authentication protocols used to support the Butler. The first is used to

authenticate a machine owner to a trusted, physically secure Central Authentication Server,

or CAS. In this protocol, the owner's password is sent over an encrypted network connection

to the CAS. The CAS then associates the owner's identity with that of the connection to the

CAS, so that further messages to the CAS do not need explicit authentication information.
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The second protocol is used to set up a secure and authenticated communication channel

between two Butlers. (Each Butler assumes the identity of the machine owner who creates it.)

These protocols are described in Chapter 3.

If stronger assumptions are made, it may be possible to provide greater protection for

guests. For example, if we assume that machines cannot be microcoded by users, it might be

possible to provide remote certification that a particular operating system is loaded; however,

it is necessary to assume users do not tamper with hardware, or that parts of the machine are

physically secure. An extreme case is the use of tamper-resistant hardware modules [Kent

80]. All of these schemes rely or n-hysical protection in one form or another.

2.5.3. Summary of Protection

An important job of the Butler is to provide protection for resource sharers. Although a

secure operating system can implement processes with separate protected address spaces,

the operating system must be extended with the Butler to deal with protection problems that

involve multiple machines. One such problem is the protection of the guest. Authentication is

used to discourage malicious behavior that compromises a guest's security, but stronger

techniques are possible if physical protection can be guaranteed. Another important problem

is the protection of residents from the guest. The most important task here is keeping track of

resources given to the guest to prevent the guest from exceeding its resource limits.

Protection problems will be dealt with in greater detail in Chapter 3.

2.6. The Banker

The Banker is used for the protection and tracking of resources, and it represents a

solution to the problem of laundered requests in which a guest coerces a server with greater

privilege to behave maliciously. The problem of laundered requests also appears when we

wish to revoke rights from a guest. Simply migrating the guest process may not recover many

resources if the guest has employed local servers. Consider the following: a host wants to

recover all of a guest's resources, so it halts and destroys the processes in use by the guest.

The guest, however, has previously transferred local file system connections to the client.

The client can therefore continue using resources on the remote machine. The problem here

is that the host has lost track of the fact that access to the file system and its resources were

granted to the guest.
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To solve this problem, a new server called the Banker is created to manage accounts for all

users. The Banker maintains an account list for each guest, and an unforgeable signature is

given to the created guest process to use in all transactions with servers. The purpose of the

account list is to specify a set of available resources. Whenever a server allocates or

deallocates an accounted resource on behalf of some process, the account indicated by the

process is debited or credited by the server. The Banker informs the server when a debit

would overdraw the account.

The Banker makes available several types of accounts, corresponding to different resource

accounting methods. Typically, accounts will have operations that are isomorphic to

transactions on real-world bank accounts. An example of an unorthodox account type is one

for priority levels in which accounts cannot be combined additively. Another example of

accounts implemented by the Banker are subaccounts which can draw upon a master

account. This type of account can be used, for example, to control resources when a guest

process forks.

The Banker is useful for a number of reasons:

1. The Banker provides accounting services for other servers. This simplifies the
servers, and allows them to share common operations. In addition, it provides an
identification service in that it maps signatures to accounts. A user does not
necessarily need to authenticate himself to each server, since his signature
serves as a capability.

2. Identities maintained by the Banker are abstract. The Banker does not associate
resources with any specific object such as a process, (human) user, or console
as is frequently done in current systems. Thus, the association of resources to
objects can be flexibly determined.

3. The Banker has many of the advantages of a capability-based protection system.
Signatures are analogous to capabilities, but the operations on accounts are an
extension to the normal operations provided on capabilities. Typically,
capabilities carry a small set of boolean values indicating rights. Signatures carry
account lists which can be large sets of values, and are not npcessarily boolean.
The capability-like aspect of signatures allows users to pass subsets of their
rights on to subsystems by creating subaccounts. Users can provide their own
exception.handlers to be invoked if a subsystem tries to overdraw an account.
Policy is therefore determined entirely outside the Banker, which simply provides
mechanisms for accounting.

4. The Banker contains all of the data structures necessary to map identities to
resources. Thus, it is possible, given a signature, to find all of the resources that
have been allocated from that account. This is useful for recovering resources
from a guest.
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2.7. Applications

The examples in Chapter 1 present three uses of sharing that are good applications for the

Butler. A few more examples are considered below.

2.7.1. Automated Software Installation

A potential problem with a network of personal computers is the maintenance of up-to-date

system software on local disks. Most users will not want to perform file updates manually as is

commonly done in current systems. To avoid this work, users can let a program do this

automatically. The policy database is altered to enable a remote program to update the local

disk. Ordinarily, only the system administrator would be authorized to perform these updates.

When a new version of a system program is issued, the system administrator runs an

update program which has a list of machines requesting automatic file updates. For each of

these machines, the administrator's program uses the Butler to access the remote machine's

file system. The new version is then copied to the remote machine.

2.7.2. Mail Delivery and Bulletin Boards

The Butler can be used to help transfer electronic messages. For example, suppose a user

wants to transmit a message to some remote machine. The user invokes a mailer program

and gives it his message. To deliver the message, the mailer program, poses as a client and

requests its agent to invoke a mail server on the remote machine. The agent will contact the

host of the destination machine and attempt to invoke the mail server. If the user is

authorized, the mail server is invoked, and the message is delivered.

Computer mail systems usually require authentication of the sender and receiver. Since the

Butler performs authentication as part of negotiation, the mail system is simplified. Another

advantage of the Butler is that it can invoke servers only when they are necessary. Thus, a

user need not maintain an active mail server process for each mail format and protocol in use

by the network.
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2.7.3. A Distributed, Fault-Tolerant Program

The existence of multiple computers connected by a network makes it possible to construct

a program that continues its execution despite machine failures. The basic idea is to

implement the program as two processes: a master, which normally does all the work, and a

backup, which stands by in case the master dies [Bartlett 811. The master sends state

information to the backup so that, if the master dies, the backup can quickly reconstruct a

master, which then continues execution. The Butler is used to locate hosts for the master and

backup processes. Figure 2-3 illustrates the configuration of master and backup processes

before and after a machine failure. If the backup dies before the master, the master

reconstructs a backup process and continues.

BEFORE:

Inmachineon

AFTER:

I ( Master
Il ----" //j] j/Backup IMaster

machine I machine 2 machine

(failed) -

Figure 2-3: Using multiple machines to build a fault-tolerant program.
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Special precautions must be taken for this technique to work. Ordinarily, a host Butler will

expect to maintain a network connection to the agent. If the agent disappears, the host

assumes that the requested services are no longer necessary, and the guest is aborted. For

the fault-tolerant program, the host must be instructed (as part of the negotiation) not to abort

the guest if the agent dies. Thus, the guest (backup process) survives and can create a new

master. There must always be several machines that are willing to execute master and

backup processes.

A reliable program might be used as a server that holds messages if the destination

machine is down. This technique could also be used for computationally intensive programs

that can survive crashes without restarting, and further applications of fault-tolerant

distributed programs are given by Shoch [Shoch 82].

2.7.4. Digital Music Synthesis

This application is actually an instance of the distributed program example (see section

1.2.4), but it is included here to illustrate how machine failures can be handled in a particular

program. Digital music synthesis is a computationally expensive task [Moorer 771. For

example, the summation synthesis technique 3 requires on the order of 106 multiplications,

additions, and table lookups for each second of sound for each synthesized instrument, and

there might be tens or even hundreds of instruments.

To distribute the synthesis task, a master process is invoked by the user to acquire

resources from a number of host Butlers. The remote machines execute simple synthesis

programs that accept short sound descriptions and output digitized audio results. The sound

descriptions are obtained from the master which in turn obtains them from a score. The

master also mixes the results, and writes them to a file as illustrated in Figure 2.4.

To handle machine crashes and revocation of resources, the master saves each sound

description until the corresponding synthesized sound is returned by the remote synthesis

program. If the remote program is aborted by the host or by a machine crash, the master

retransmits the parameters to another synthesis program. Recovery is simple because the

synthesis programs are pure functions: as long as the arguments are known, the master can

retry the function until its execution succeeds.

3Summation synthesis constructs a signal by adding sine waveforms of various frequencies and amplitudes.

ILL . _ _ .. . . =, .==. = .I II II I , .... .. . .. ;,; =- ... . .... . . . _.A
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Figure 2-4: A distributed music- synthesis program._-_.

2.7.5. Execution of Engnin ng Test Programss

Another application of the Butler is in automating the execution of test programs, which are
often run as part of a preventive maintenance program. For this application, a machine

responsible for testing periodically requests remote Butlers to execute hardware diagnostic

programs. Since these programs require privileges to access microcode and device

registers. machine owners will want to authorize only certain people to run them. This is

easily accomplished by entering the desired policy in the policy database.

If the diagnostic program discovers a problem or crashes on the remote machine, the

invoking program (running locally) can report the problem to an engineer. Also, test results

can be saved in a database for statistical analysis.
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2.8. Summary

The Butler is a system program that facilitates resource sharing in a network of personal

computers. The Butler serves the roles of agent to locate resources and host to loan them.

Although most of the Butler's activity involves the initiation of sharing, the Butler also deals

with exceptional conditions arising from resource revocation and machine failures. The

Butler is primarily concerned with providing support in the following areas: protection,

negotiation, and policy administration.

The Banker is a system program that provides accounting services to other servers and

application programs. The Banker is used to keep track of the resource utilization of

programs so that limits can be enforced and so that programs cannot launder resources.
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Chapter 3
Security and Protection

Maintaining security in a network of personal computers is a difficult problem because

resources are distributed and often physically insecure. In addition, since a communication

network connects all components, there are many opportunities for a malicious user to

intercept, forge, or manipulate network messages. Furthermore, the network provides a

convenient channel through which a malicious user can attack remote machines.

It is important to realize that all security problems exist in the context of a system that has

certain properties (for example physical security and a secure operating system). Further

assumptions are sometimes made (users will not tap terminal lines). If one is allowed to make

arbitrary assumptions. then security problems can often be greatly simplified, but the resulting

solutions may not be applicable to many real systems. Consequently, the designer must find a

balance between the level of security obtained and the extent to which simplifying

assumptions are made, and the reader must be careful to understand the problem as well as

the solution. In this chapter, I try to emphasize the assumptions that are critical to the security

of the proposed mechanisms.

3.1. Basic Assumptions

The Butler resides at a high level of control in the personal computer and depends upon

lower levels of the system for slupport. Since the lower levels are critical to the security of the

Butler, our presentation will necessarily include a description of how protection mechanisms

are implemented "from the ground up". It should be noted that most of the security measures

employed are based on known techniques. It is only at the highest level, that of the Butler,

that any new ideas are considered.



42 Resource Sharing in a Network of Personal Computers

3.1.1. Protected Address Spaces

Because we are interested in using machines to perform many tasks, it is assumed that

each machine can support many mutually protected processes, meaning that no process can

affect another without permission by such means as modifying registers or writing into

another process's address space. Processes can interact however, by protected

communication facilities provided by the system.

3.1.2. Protected Microcode

Writable control stores raise a special problem. With most machines, direct user access to

microcode cannot be allowed if we want to prove anything about the behavior of the machine.

Therefore. it must be possible for the operating system to prevent a user from directly altering

any microcode or microprocessor state in the machine,

This does not mean that users should never write microcode; it only says that a machine

owner must be able to protect himself when he chooses in order to guarantee some

assumptions about protection.

3.1.3. Protected IPC

Interprocess communication is also protected. A process has control over the messages it

sends and receives, and the right to send a message to a process cannot ordinarily be

fabricated without the cooperation of that process. (Special provisions are made, however, to

establish communication with a process when it is first created.) We will see that a protected

IPC facility is important in the construction of higher-level protection mechanisms.

3.1.4. Network Encryption

Another assumption is that personal computers can communicate with one another over a

network. To facilitate secure communication, each personal computer is equipped with an

encryption device that implements either a conventional encryption algorithm or a public.key

encryption algorithm. It is assumed that the speed of the encryption device is not a significant

factor in the performance of the system. With the protocols to be described, computers can

use these encryption devices to communicate securely.
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3.1.5. Central Trusted Server

The last assumption is that the network is connected to a physically secure central

authentication server, or CAS. which must be trusted by all users of the network. The CAS

may be replicated to increase the reliability of service. If the assumption that a single machine

is secure is too severe, then it is also possible to rely on several authentication servers in such

a way that the network security is only compromised when the security of all authentication

servers is compromised. The necessary protocols for a multiple authentication server

scheme are more complicated and difficult to analyze than those for a single CAS, and will be

discussed near the end of this chapter in Section 3.7.

Our general approach is based on the Spice system under development at Carnegie-Mellon

University. The security mechanisms of the system will be described in a bottom-up fashion,

in steps that correspond to layers in the implementation. At each step, facilities are added to

existing ones to extend their functionality, and each step relies upon security mechanisms of

the previous one. An outline follows:

1. The first step introduces a technique for loading a secure operating system on a
personal computer. A trusted operating system must be loaded before any
assumptions can be made about a machine's behavior.

2. A secure, intra-machine message-passing mechanism is introduced as a means
of communication between processes on a single machine.

3. To allow processes on separate machines to communicate. network server
processes are introduced. The netwotk server is a part of the operating system
which extends the intra-machine message-passing primitive so that a process

can deliver messages across the network.

4. Encryption techniques are added to the previous step to achieve secure
message-passing between machines.

5. Authentication protocols are then constructed so that we can determine machine
identities. The identity of a machine is the identity of the user responsible for
loading trusted system software.

6. Authentication protocols are developed to authenticate users to one another. A
user is one who "logs in" or initiates a process, and does not necessarily have
the same identity as his machine.

7. Given a secure network communication facility and a means of authenticating
identities, protocols for resource sharing are developed.
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3.2. Review of Encryption Techniques

Before addressing the issues of security for resource sharing, basic encryption techniques

are reviewed. The principal use of encryption is to transmit information securely across

insecure channels. This is accomplished by transforming the information so that only the

receiver can recover the original information. More details can be found in (Popek 79].

3.2.1. Conventional Encryption

With conventional encryption, a function is defined that takes cleartext data and a key, and

produces encrypted text. Using the notation in [Popek 791,

E = F(D, k),

where D is the data, K is the key, and E is the encrypted text. Another function, F', is available

to undo the encryption:

0 = F'(E, K).

An important property of F and F' is that without knowledge of K, it is impractical to recover D

from E. In other words, one cannot decrypt a message without the key. Also, even if the

corresponding E is provided for any chosen D, it is impractical to derive the corresponding K.

Therefore, one cannot break the code, even if one can obtain encrypted versions of chosen

cleartext messages. The functions F and F' are publicly known algorithms, and are never

changed, so a hardware implementation is possible. An example pair of functions can be

found in the Data Encryption Standard (DES) of the National Bureau of Standards [NBS 77].

3.2.2. Public-Key Encryption

In conventional encryption, the same key must be used to encode and decode data. In

public-key encryption, separate keys are used for encoding and decoding:

E = F(D, K),

D = F'(E, K').

Again, F and F' are publicly known. In addition to these functions there is an algorithm that

generates a pair of keys (K, K'). Given K', it must be impractical to derive K. Furthermore, F

and F' are usually interchangeable: that is, one can encode with F' and decode with F. The

keys K and K' are referred to as the private and public keys, respectively.

Since the encryption function is fixed, there is no need for the notation to explicitly mention

it, and we will usually write K(O) as an abbreviation for F(D, K).
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3.2.3. Redundancy for Authentication

The receiver of an encrypted message must normally check that the message was

encrypted with the proper key, otherwise, random messages could be forged simply by

issuing a random stream of bits. The sender therefore adds redundant information to the

message which can be checked by the receiver. In some cases, such as text strings, there

may be enough redundancy in the data that added redundancy is unnecessary. in this

chapter, it is assumed that redundant information (a checksum, for example) is always added

so that messages encrypted with the wrong key are detected.

Encryption can be used to authenticate the sender of a message. Suppose it is known that

only machines A and B have a conventional key K. If A receives a message K(D), then the

message must have come from B, since no other source could encrypt D with K. Machine A

must be careful, however, since K(D) could be intercepted and retransmitted by another

machine at a later time. This problem is usually avoided by first having A send B an arbitrary

piece of data, perhaps based on the time of day, to include with D. This data is checked by A

to insure that a message is not a replay of an earlier message. Sequence numbers are also

added to the data to prevent the acceptance of copies. Kent (Kent 81] gives an excellent

description of these and other techniques for security and authentication in computer

networks.

3.3. Loading An Operating System Securely

The security of a machine depends largely upon its operating system, so there must be a

way for a user to load a certified copy of an operating system into his machine. We will

assume that the desired system is available from a file that can be accessed via the network.

It is assumed that the user's machine is initially in an unknown state, and perhaps the

machine has been in the control of someone other than its owner. This situation could arise

in several ways. The machine could have just undergone maintenance, or perhaps the

machine was left unattended and accessible to other users. The machine may be located in a

public place, or the user may have temporarily given away complete access to his machine,

for example, by letting a guest process install its own microcode. In all of these cases, it is

possible that the machine has been left with a modified, insecure, and possibly malicious

operating system. A malicious system could act as a "trojan horse" and obtain rights of the

machine owner when he logs in.
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Since none of the machine state can be trusted, it must be possible to load a certified

operating system without relying upon any alterable state of the personal machine. In fact, it

must not be possible for alterable hardware, or for programs or data in alterable memory, to

interfere with the security of the loading process. If no assumptions can be made about

alterable state, then clearly some requirements must be imposed upon the hardware, which

may include read-only memory.

To load a certified operating system securely, a bootstrapping procedure is used,

beginning with a loader that is kept in read-only memory (ROM) on every machine. Each

machine is equipped with a physical switch, called the boot switch that causes the processor

to begin executing code from the loader. If the machine has a writable microstore, then either

the hardware must initialize the store from a ROM, or part of the microcode must be resident

in ROM. The boot switch also causes the micro-machine to begin executing this ROM-based

microcode.

Since security depends upon information in ROMs, it must be impractical to replace them

physically or logically. For example, even if a ROM is somehow sealed against removal from a

processor circuit board, it may be possible to cut address and data lines to the chip and

reroute them to another. Another path of attack is to replace some portion of the personal

computer, such as a printed circuit board, containing the boot ROM. In the extreme case, the

entire personal computer could be replaced with one in which a malicious boot ROM is

installed. The degree of precaution necessary to guard against such physical attacks

depends upon the value of the resources being guarded and the relative effort required to

breach other walls of security.

In any case, we will assume that the user trusts the hardware on his machine which

includes a ROM-based loader. The problem is to construct a loader that will enable the user

to load a certified operating system over the network. In practice, it may be advisable to

reduce the problem of loading the operating system to that of loading a reliable loader, using

a small bootstrap loader based in ROM. This allows changes in the loader without changing

the ROM, which is expensive to replace.
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3.3.1. A Loader Based On Public-Key Encryption

If public-key encryption hardware is available, the loader holds a public key, and one or

more file systems hold a copy of the certified operating system, encrypted with the private key.

The private key itself should be kept in an extremely secure place, since disclosure of this key

renders the boot ROMs in all machines insecure. The file systems that store the encrypted

software need not be secure at all, since no secret information is maintained on-line.

The loader requests a copy of the operating system from some file server (possibly located

through a network name server). The file is delivered to the loader which decrypts it using the

public key. Notice that without the private key, an operating system cannot be forged. Also

notice that no secret keys need be stored in the loader or in the file server. This implies that

the boot ROM does not contain any secret information. The ROM must be protected from

modification, but not from access.

One problem with this scheme is that a malic~ous file server could send an out-of-date

version of the operating system, perhaps one with known bugs. The next two sections

present schemes that solve this problem, but require secret information to be maintained

on-line.

3.3.2. A Loader Based On Conventional Encryption

Conventional encryption has the property that the encoding and decoding keys are

identical, so both must be secret. We will assume that each user carries a secret key, K,

known only to him and to the CAS. After the user pushes the boot switch, he must enter an

identifier I and his key K. This may be accomplished by inserting a card into a magnetic card

reader, by inserting a ROM into a socket, or by manually typing information into the machine.

The loader creates a new key at random called R. Then, the loader encrypts I and R with K

and sends them to the Central Authentication Server (CAS) along with identifier I in cleartext.

When the CAS receives the messages, it uses I to find K in a securely stored table. The

CAS can then use K to decrypt I and R from the remainder of the message. Here, K serves

two purposes: it functions as a password authenticating I, since I can only be encrypted by

someone who knows K, and it serves to encrypt R which is used in further messages to and
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from the CAS 4 , To complete the loader protocol, the CAS either sends a copy of the

operating system, encrypted with R, or it arranges for a trusted file server to do the same.

To see that this scheme is secure, note that only the loader and the CAS have copies of K,

and K is never transmitted. Therefore, only the CAS can decode R, and at this point only the

CAS and the loader can have copies of R. If the loader receives a recognizable operating

system, it must have come from the CAS, since the operating system is encoded with R. A

malicious machine cannot record the messages from the CAS for replay at a later time, since

a new R is generated by the loader at the beginning of the protocol.

3.3.3. A Hybrid Scheme

An advantage of the previous scheme is that conventional encryption is used for messages.

Conventional encryption is less expensive than public-key encryption at the present time.

However, a drawback of the previous scheme is that the user must enter an identifier and key.

This disadvantage can be removed by performing a small amount of public-key encryption

and decryption in software.

As before, the loader first constructs a random conventional key R. This key is encrypted in

software with a public key K' corresponding to a private key K which is only known to the

CAS. The encrypted R is sent to the CAS which decrypts R in software. Now R can be used

as a conventional encryption key to encrypt the opt:.:;ing system and send it to the loader

which uses its copy of R for decryption.

Only the CAS has private key K, so only the CAS can acquire R. Without R, a program

cannot send a recognizable operating system to the personal machine, and therefore, the

personal machine is assured of receiving a certified operating system.

A problem with this scheme is that the private key must be used frequently on the CAS. If

this key becomes known outside the CAS, then all loader ROMs have to be replaced.

However, this hybrid scheme does remove the requirement that machine owners carry or

remember secret keys.

4 K could be used for further messages, but it is safer to avoid keeping K in fast memory where it is more
vulnerable. Although R is no less vulnerable, its useful lifetime only extends to the time of the next connection to the
CAS.
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3.3.4. Certifying an Operating System

A disadvantage of all of the schemes above is that they require a copy of the complete

operating system to be transmitted. It is possible to reduce the network traffic and possibly

load the operating system faster if the personal computer has a local disk, provided that the

local copy can be certified. The loader can certify the system by computing a secure

checksum or hash function and comparing the result to the correct value obtained from the

CAS. The checksum algorithm must have the property that it is impossible for someone to

construct a message that differs from a certified one but has the same checksum. A

technique for constructing a checksum has been suggested by Davies [Davies 811.

Davies' algorithm uses successive DES encryption of an initial value I with keys obtained by

dividing the message into blocks. (In the case of the loader, the operating system is the

message.) Let the message be

M = ml, 2 , m 3 .. m n,

where mi is the ith block of the message. The checksum C is obtained from

C = mn(mn-l( ... m2(m1l()) ... )),

that is, encrypt I using the first block as the key, then encrypt the result using the second

block as the key, and so on. The final result is the checksum.

3.3.5. The Local File System

Earlier, we made the assumption that no alterable state is to be trusted when an operating

system is loaded. This implies that we cannot trust any state on the local disk. In particular,

we cannot trust the directories and other data structures on the disk to be consistent.

Unfortunately, the cost of restoring the contents of an entire disk from a central server may

be very high. Several alternatives are described below.

3.3.5.1. Encryption

The machine owner can encrypt all information written to the disk. This allows the system

to detect unauthorized modification of the disk. A drawback of encryption is that only the

owner can load and start the machine since knowledge of the disk encryption key is required

to use the disk. Furthermore, the owner cannot allow a guest to do anything unsafe, such as

to load microcode, since that privilege might be used to steal the disk encryption key.

II
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3.3.5.2. Redundancy Checks

It is possible to write file systems that do not rely on disk-resident data structures other than

the file data blocks themselves. For example, in the Alto [Thacker 82] and Perq [Perq 81)

computers, each disk block has a header containing the file identifier and block number to

which it belongs. This solves the problem of corrupted index and directory structures, since

the file system can recover from inconsistent data structures on the disk.

Encryption can then be used to prevent unauthorized access to personal files, and the

checksum technique of Section 3.3.4 can be used to certify operating system and other public

files. With this technique, a guest can still tamper with the disk, but he cannot steal

information, and he cannot construct a trojan horse by manipulating disk storage.

3.3.5.3. Physical Protection

The local disk and a small dedicated processor can be secured physically and accessed

over a high-speed bus. The disk processor implements typical file access functions, but

prevents direct disk access which might be used to corrupt the disk structure. The processor

could also enforce file protection, or encryption techniques could be used as described

above.

3.4. Secure Intra-Machine Message Passing

The next task is to provide for secure intra-machine messages. This is a relatively simple

problem, since the following assumptions are made:

1. A known and trusted copy of the operating system is loaded.

2. The operating system is secure. By enforcing separate address spaces for all
processes, the operating system protects itself against application programs.

This is exactly the situation found in conventional time-shared systems, and there are

several examples of time-sharing operating systems that provide secure message passing, for

example, Hydra [Wulf 741, and Demos [Baskett 77].

In this dissertation, we will consider the IPC mechanism of Accent, the Spice operating

system kernel [Rashid 81]. Accent implements an abstract object called a port. Accent

protection mechanisms prevent direct access to the representation of ports, but several

operations involving ports may be invoked.
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An AllocatePort operation creates a new port and returns a name that can be used by the

application program to reference the port. A Send operation delivers a specified message to I

a port, and a Receive operation retrieves a message from a port:

AIocatePort returns PortName
Send(Message, PortName)
Receive(PortName) returns Message

The actual interface to Accent IPC is more elaborate, but this outline serves to illustrate the

important concepts.

As indicated above, programs reference ports indirectly through port names. A port name

is used by a process to reference a port. For each process, Accent maintains a table of

correspondences between port names and ports. This level of indirection prevents processes
from forging port tokens and avoids some naming conflicts since two processes can have

different local names for the same port.

A port is made accessible to another process by sending it in a message. To send a port.

an indication is made by the sender that part of his message is to be interpreted as a port

name. Before delivering the message, Accent translates the name to one through which the

receiving process can access the port.

A set of rights is associated with every port name. The most important rights are send and

receive rights. Only one process can have receive rights on a port, but many processes can

have send rights. When a port is sent in a message, the sender indicates what rights are to be

sent.

This is a very condensed description of the message-passing facilities of Accent. The

reader is referred to the description by Rashid and Robertson [Rashid all for more details.

3.5. Secure Inter-Machine Message Passing

The next task is to provide secure message passing between machines. I first describe how

messages can be sent across a network and then show how to do it securely.
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3.5.1. Network Servers

Message passing can be extended to the network by introducing network server processes

[Rashid 811. A network server is a part of a machine's operating system; it is transparent to

an application program, and its function is to translate between intra-machine messages and

network messages. To illustrate this, suppose process A on one machine wishes to send a

message to process B on another (see Figure 3-1).

A's machiine

Figu re 3-.1: The use of network servers to achieve transparent
inter- machine communication.

Process A has a port, PA' which it uses to send messages to B. Since B is on a remote

machine, it cannot directly receive messages from this port. Instead, a network server
process receives the message from A. Next, the port on which the network server receives

the message is used to find a virtual circuit [Tanenbaum 81] on which to forward the message.

The message at this point may need to be translated from its operating system message
format to a network message format. The message is then sent to network server B. Here the

virtual circuit over which the message is received is used to look up a port, Pis on the remote

machine. If necessary, the message is translated back into its original operating system

format. Finally, the message is sent to this port and received by B. It is important for network

transparency that A and B both use ordinary intramachine message primitives to send and

receive messages across the network. This is made possible by interposing network servers

between the application processes and the network.



Security and Protection 53

3.5.2. Passing Port References

Process A can send a port name for port QA across the network in the following manner.

First, A sends send rights for 0A to port PA' (Process A has receive rights for OA). The

message is received by the network server, which locates or allocates a virtual circuit

corresponding to 0 A . An identifier for the circuit is then sent to network server B, which

locates or allocates a port QB to correspond to the virtual circuit. Finally, )B is sent as an

Accent IPC message to port P8 . Again, the translation from kernel messages to network

messages and back is transparent to A and B.

Some additional bookkeeping is used to optimize routing. For example, if B passes a

reference to Q on to a third machine C, messages from C to A go directly to NSA rather than

indirectly through NS1 ,

3.5.3. Secure Network Communication

Although the techniques above can make the network logically transparent, they do not

extend the security of intra-machine messages to inter-machine messages. Network security

is accomplished through encryption. We will assume that conventional encryption hardware

is to be used, Referring to Figure 3-1, if network server A (NSA) is to communicate with

network server B (NSB), then each must have an encryption key, say KAB. In general, there

must be a key Kxy for each pair of servers X and Y. The problem is to obtain the key at

machines A and B without ever transmitting the key in the clear or revealing it to an untrusted

party. The central authentication server is used for this purpose.

We will assume that each machine has a key that it can use to communicate securely with

the CAS. This will be referred to as the CAS connection key. The key R obtained by the

loader in sections 3.3.2 or 3.3.3 can be used as the connection key. In addition, the CAS must

have an identifier, the CAS connection identifier, associated with each CAS connection key.

Either NSA or NSB can initiate the sequence to obtain a key KAS, but we will assume that
NSA begins. NS A creates a random key KAB and sends K and the connection identifiers IA

and 1B of NSA and NSB, all encrypted with the connection key of NSA, to the CAS:

CA(KAB, 'A' IS) - CAS

The CAS uses 1. to find the connection key, C, for NS . It then encrypts KAS and IA with Ca

and sends them to NSB:
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CB(KAB 1
A) -- NSB

Now NS A and NS B each have key KAB and can communicate securely. The CAS should

destroy its copy of KAB after sending it to NS 6 . Figure 3-2 illustrates the messages involved.

(1))
CA(KAB '"A 'B B(B "A)

Figure 3-2: Distributing an encryption key.

3.5.4. Machine Authentication

It will become important for one machine to determine the identity of another, based on the

person responsible for loading trusted software. This is easily accomplished as part of the

key distribution protocol by making the CAS connection identifier be the machine identity.

The CAS knows this identity since it is authenticated at the time of initial connection to the

CAS (see Sections 3.3.2 or 3.3.3).

3.6. Authentication

We now move from the machine to the piccess level of abstraction. In the previous section,

we were concerned with machine identities. We will now see how to authenticate user

identities, which are entered when a user initiates a session with his machine. User and

machine identities may differ. Our problem is to establish a connection via Accent IPC ports

between two processes, each of which knows the identity of the process at the other end.

Again, the central authentication server (CAS) is used, and the protocols are similar to
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those used for key distribution. The similarity is not so surprising when it is realized that a

secure port system is analogous to a message-passing system based on public-key

encryption. Receive rights of a port correspond to a private key and send rights correspond

to a public key. Just as a message uncrypted with a public key can only be read by the

process with the corresponding private key, a message sent to a port can only be received by

the process with the corresponding receive rights. Although encryption is usually reversible,

that is. a message can be encrypted with the private key and decrypted with the public key,

the port system is strictly one-way.

3.6.1. Getting Started

Each personal machine initially requires send rights on a port, called the machine-to-CAS

port. to which the CAS has receive rights. Ordinarily. port names are only copied by sending

them in a message to another port. so the CAS cannot transfer a port token to another

machine by ordinary means. Instead, the network servers on the CAS and personal machines

must provide non-transparent operations that establish the initial port connection. This is

convenient to do at the time that the operating system is loaded, since that is when a secure

network level connection is established with the CAS. The operating system uses this port to

establish secure connections between users and the CAS.

For our purposes, a secure connection is a pair of ports that allows two processes, A and B,

to communicate. Each process has receive rights for one of the ports, and send rights for the

other. Send rights have not been given to any untrusted processes, so when a message is

received by A through one of the secure connection ports, it can be assumed that th

message was se-;t by B or by some agent acting on behalf of and trusted by B. Similarly,

messages received by B are assumed to have originated with A or an agent of A.

An authenticated secure connection between A and B is one in which the identity of A has

been authenticated to B, and the identity of B has been authenticated to A. More precisely,

when the connection is established, A is given send rights for a port and proof that B has

claimed to own the port's receive rights. Similarly, B is given send rights for a port and proof

that A has claimed to own the port's receive rights. Nothing can stop A or B from misusing or

giving away rights to ports in the connection, but if A and B cooperate, thcri no outside party

can interfere with the establishment of a secure and authenticated path of communication

between A and B.
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3.6.2. Connecting to the CAS

When a user logs in, a secure authenticated connection is established between the user

and the CAS in the following manner: The operating system first creates a port for the user to

receive messages. Then, send rights for that port, the user's name, and the user's password 5

are sent to the CAS, using the machine-to-CAS port obtained in Section 3.6.1. The CAS

checks the password against a table of stored name/password pairs to authenticate the user,

and a new CAS port is created to receive requests from the user. Send rights are then

returned to the user's port, so that the user and CAS now have an authenticated secure

connection.

3.6.3. Establishing a Connection to a Process

Using the central authentication server as a trusted intermediary, two processes can

establish an authenticated secure connection. (Hereafter referred to simply as a
"connection".) For example. a user process can communicate with a server over a

connection to request services and obtain results. Also. Butlers use a connection to

determine the identity of the other Butler when resources are shared. To illustrate the

connection protocol, suppose processes A and B wish to set up a connection. Figure

3-3 illustrates the messages involved.

In the first step, A creates a port PA fcr the receive side of the connection. Send rights for

this port and a random transaction key are sent to the CA'S in a "register port" message. The

CAS retains this information. Next, A sends B a "connect request" message The message

contains the transaction key and is sent to a publicly known port belonging to 8. Process B

creates the second port of the connection, PB' and sends the transaction key and send rights

for the new port to the CAS. The CAS responds by finding the information from A with a

matching transaction key and the name B. The identity of B and send rights for PB are sent to

A. The identity of A and send rights for PA are sent to B. A and B now have a secure

authenticated connection.

This same protocol can be used to authenticate an existing connection. For example, A

and B may exchange PA and PB in an insecure way for the sake of efficiency, exchange

5 The password can be a text string typed by the user, a number stored on a magnetic card, or a more secure

identifier such as a machine-read fingerprint or voiceprint.
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Figure 3-3: Establishing an authenticated secure connection.

several messages. and then decide to authenticate the connection. This technique will be

used to make resource negotiation more efficient (see Chapter 5).

3.6.3.1. Authorization

The CAS can also be used to implement an authorization service based on group

membership. To do this. the CAS maintains a database of groups and membership relations,

where only an authenticated group owner can alter the membership of his group. Servers,

including the Butler, are instructed to grant rights to members of certain groups. (This is

often more convenient than granting rights directly to individual members.) Servers will now

need to know group membership information as well as the identity of the process at the other

end of a connection, but this extra information can be supplied by the CAS during the

connection protocol without sending additional messages.

3.7. Using Multiple Authentication Servers

A central authentication server provides a single point of attack in an otherwise highly

distributed security system. To avoid this weakness, multiple servers can be used in such a

way that the system security is only compromised when the security of all servers is

compromised. This is unlikely if servers are implemented and maintained separately.
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3.7.1. Loading an Operating System

After loading an operating system using the single authentication server protocol, the ROM-

based loader computes a secure checksum. This is compared against a checksum

independently obtained from each authentication server. All authentication servers would

have to conspire to prevent the loader from detecting a forged operating system.

3.7.2. Secure Network Communication

Network servers NSA and NS8 in Section 3.5.3 obtain key KAB as follows. First, the protocol

in Section 3.5.3 is carried out with each authentication server. The resulting keys are

exclusive-or'ed together to form a composite key K AB* No authentication server will know

K AB, and KAS can only be constructed if all authentication servers reveal their contribution to

the composite. This assumes that any string of bits is a suitable key, which is true of DES

keys.

3.7.3. Authentication

The use of multiple authentication servers to enhance the security of connections made

through ports is an unsolved problem. It is simple, however, for the operating system of one

machine to establish a secure authenticated connection over ports to the operating system on

another machine, without relying on the CAS at all. No authentication server is necessary

once an authenticated and encrypted channel between network servers is established.

Messages to a network server are self-authenticating since they are encrypted with a secret

key known only to one other network server, and the identity of the system with the other copy

of the encryption key is determined at the time the key is obtained from the CAS. The network

servers can simply cooperate to generate a pair of ports for use by their respective operating

systems.

3.8. Resource Sharing Protocols

Resource sharing is supervised by Butlers. For protection reasons, a separate Butler

executes on each machine, and the Butler itself never uses resources on another machine.

Since malicious behavior can only be obtained when an uncertified operating system is

loaded, it is desirable to identify the person who loaded the system. Before borrowing
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resources, the agent Butler finds a suitable host and performs the authentication protocol,

authenticating the identities of the two Butlers. The identity of a Butler is the identity of the

person responsible for loading the operating system.

The major task of the host Butler is to protect its machine from guests. Several techniques

are used:

1. Policy Enforcement. The Butler only grants access to resources permitted by
the machine-owner's policy.

2. Accounting. The Banker keeps track of resources used by the guest. This
allows fine control over resources and prevents unauthorized acquisition of
resources by laundering requests through servers.

3. Revocation. The Butler has absolute control over all guests. If a guest process
attempts to exceed its authorized resource limits, then the Butler can issue a
warning, deport the guest, or destroy it and all of its rights.

The protective role of the Butler in resource sharing is elaborated throughout the remaining

chapters.

3.9. Summary

A layered approach is taken to achieve a secure system whose foundation is an operating

system kernel that supports separate address spaces and secure message passing. To

extend the message-passing primitives of the local operating system to the network,

encryption and network servers are used. Network servers establish secure, authenticated

connection through the use of a secure, central authentication server and key exchange

protocols. At the highest level of protection, the Butler and Banker protect the local machine

from the guest by administering the machine owner's policies, performing accounting, and

possibly revoking guest rights.
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Chapter 4
The Banker

The Banker is a process that provides accounting services. The Banker's most important

role is to implement protection mechanisms so that the host Butler can protect its machine

against malicious guests, but the Banker also implements an exception-handling mechanism

to assist recovery from the revocation of rights. In addition to the Butler, any process can use

the Banker to restrict or control the resources used by a subsystem; for example, the

command interpreter for the operating system could use the Banker to terminate runaway

programs invoked by the user, even if that program forks into many processes.

The Banker can also be viewed as a type-manager for an extended form of capability called

an account. An account represents a user's right to use a specific resource, and accounts

can be passed like capabilities to other programs in order to grant rights. (Actually, a

signature representing multiple accounts is passed.) The Banker has an abstract view of

resources, and new physical or abstract resources can be described to the Banker at any

time. The Banker has no special knowledge of servers; thus, ordinary application programs

can become servers with all of the protection mechanisms available to system programs.

The next section presents an overview of the facilities provided by the Banker, and shows

how they can be used for protection. In Section 4.2, abstract types for representing rights and

bank accounts are defined. The two sections that follow, 4.3 and 4.4. deline specifically the

operations implemented by the Banker, To achieve protection, the Banker must be used in

cooperation with server processes that directly control resources. Section 4.5 describes the

standard mode of interaction between the Banker and servers.
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4.1. Serve r/Customer/Banker Transactions

Consider a customer process that wants to obtain resources from a server. The customer

has one or more accounts with the Banker, and in each account are rights that authorize the

customer to purchase resources from a server. Each customer has an unforgeable reference

to his accounts, called a signature, which is a capability that enables servers to make

withdrawals from the customer's account. Upon request from a server, the Banker performs

withdrawals if possible, and replies with an overdraft message when the withdrawal amount

exceeds the customer's account balance.

No built-in protection is provided at this level to prevent servers from misusing the

customer's signature. It does not seem worth any extra precautions since a client depends

upon servers in many other ways. Furthermore, it is difficult to recognize misuse. For

example, one might consider preventing the server from passing the signature off to another

process: however, in many cases a server must call another server on the client's behalf. In

these cases, it is necessary to transmit the signature.

Customers are arranged in a dependency Iree. Most of the local Spice system resources

are initially represented by accounts at the root of the tree. The Butler allows guest and

resident processes to share currency in these accounts in a restricted way by creating

subaccounts, which are described below.

In summary, several kinds of objects are implemented by the Banker. A customer is a

mapping from a signature to a list of accounts. An account holds rights that correspond to

some resource. Clients use signatures as capabilities to obtain resources from servers, which

consult the Banker to determine the rights that correspond to a given signature.

4.2. Representing Rights

The Banker must have a representation for rights. In this section, we will define several

abstract types, which are used not only by the Banker, but also the Butler, the policy

database, and servers that use the Banker for accounting. A type called RightsValue is used

as a resource-independent representation of rights. Another type, Currency, combines a

RightsValue with a resource name to form a representation of resource-specific rights. The

type Account is slightly more elaborate than Currency, and is used by the Banker to keep

• .,
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track of current rights. Since collections of rights over many resources must often be

manipulated, additional types called CurrencyList and AccountList are defined. Important:

these types and operations are primarily for use internal to programs. They should not be

confused with the external services provided by the Banker, which are defined in Sections

4.3 and 4.4.

4.2.1. RightsValue Type

Two types of values, integer and set, are used to represent resource rights, and

RiqhtsValue is the union of these two types. Integer values are used to represent rights over

homogeneous sets of resources, such as disk pages, where only a counter is required to

specify the number of resource objects. Set values are used to represent heterogeneous

resources like priorities or access to special devices. Another use of set values is to specify

what operations are permitted on abstract objects. Set values are actually just an

optimization, since heterogeneous resources can also be represented by multiple integer

values, using one value per resource.

A possible representation of the type is:

type RightsType is (OntVal, SetVal);

type Rights Value(TypeTag: RightsType) is
record

case TypeTag is
when IntVal = >

Amount: Integer;
when SetVal = >

Privileges: Small/ntSet;
end case;

end record;

In this type declaration, a small set of integers is used to represent the value for set currency,

but a list of strings or atoms would also be a suitable representation. In addition to access

operations, a function, Max, is defined for objects of this type:

function Max(R1, R2: RightsValue) return RightsValue;

This function returns the integer maximum or the set union of its arguments. If R1 and R2 are

of different types, then the BadType exception is raised.
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4.2.2. Currency Type

Objects of type Currency have a Name that names a resource, and a Value that gives the

RightsValue associated with that resource. The only operations on this type are to access the

two components, and a possible representation is given below:

type ResourceName is new String;

type Currency is
record

Name: ResourceName;
Value: RightsValue;

end record;

The meaning of integer and set currency is interpreted by the corresponding server. For

example, a file server might interpret a rights value as the number of allocated disk pages,

while the kernel might interpret another rights value as the number of forked processes.

4.2.3. Accounts

Type Account implements objects with three components: Name. Value, and Limit. The

Name is a resource name as in the currency type. The value field is a RightsValue that tells

how much has been withdrawn from this account, and Limit is a RightsValue that gives the

maximum allowable Value. A possible representation is given below:

type Account is
record

Name: ResourceName;
Value: RightsValue;
Limit: RightsValue;

end record;

Before specifying the formal operations on accounts, we will give an intuitive explanation of

account operations, and the interpretation of the limit and value components of accounts.

4.2.3.1. Operations On Integer Accounts

In integer accounts, the limit tells how many units of some resource type may be allocated,

and the value field tells how many units have already been allocated. Debits are performed

when resources are allocated, so to debit an integer type account, the debit amount is added

to the account value. To credit an integer type account, the credit amount is subtracted from

the account value. The balance of the account is the difference between the limit and the

value:
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balance = account.limit - account.value.

4.2.3.2. Operations On Set Accounts

Set accounts represent reuseable rights. In other words, if a user exercises a right

represented in his account, that right is not then removed from his account. Note that this is

different from the way integer accounts are handled.

The limit component of a set account tells what rights a user has with respect to some

resource. The value component tells what rights are currently in use. Before a server

performs a service requiring a given right, a debit of that right is requested. To debit a set

currency type account. the account value is set to the union of the old account value and the

debit amount. If the user wants to perform another operation that uses the same right,

another debit will be performed, but there will be no change to the account value (the right is

already in the set represented by the account value).

A credit is performed when a user is no longer exercising a right. The credit removes the

right from the account value. More precisely, to credit a set type account, any element in the

credit set is removed from the value set. Most servers will credit the account when the

customer closes his connection with the server and returns all the resources that correspond

to the account.

The balance of a set type account tells what rights the user has. This is simply the limit of

the account. By analogy to integer account types, one would expect the set account balance

to be the set difference between the limit and the value, but this tells what rights the user is

not exercising. We want "balance" to mean the set of rights the user can exercise, and this

set is precisely the account limit for set accounts,

Now that we have explained the purpose and meaning of account operations in an intuitive

way, we will present a more formal description of account operations.

4.2.3.3. CreateAccount

function CreateAccount(Name: in ResourceName;
Limit: in RightsValue) return Account,

The CreateAccount function returns an account with the specified name and limit. The

value component is set to zero or the empty set, depending on the type of the specified limit.
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4.2.3.4. Debit

procedure Debit(A: in out Account; RV: in RightsValue);

If RV is an integer value, RV is added to the value of the account. If RV is a set value, then

the account value is set to the union of the value and RV. In either case, if the resulting

account value would exceed the account limit, the account is not changed, and the Overdraft

exception is raised with a parameter of type Currency that gives the amount of the overdraft.

If RV and the value have different types, the BadType exception is raised, and no changes are

made to the account.

4.2.3.5. Credit

procedure Credit(A: in out Account; RV: in RighisValue);

Credit subtracts RV from the value of the account. If RV is a set value, any member of RV

that is a member of the account value is removed from the -ccount value. As with Debit, the

BadType exception is raised if RV is not compatible with the account value.

4.2.3.6. GetBalance

function GetBalance(A: in Account) return RightsValue;

GetBalance returns the balance of an account. For integer accounts, the balance is the

difference between the account limit and the account value. For set accounts. the balance is

simply the account limit,

4.2.3.7. GetLimit

function GetLimit(A: in Account) return RightsValue;

This function simply returns the Limit component of A.

4.2.3.8. GetValue

function GetValue(A: in Account) return RightsValue;

This function returns the Value component of A.

.. . • •III I]i i ...... ll-...-U.. .
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4.2.3.9. SetLimit

procedure SetLimit(A: in out Account; R: in RightsValue);

This procedure sets the Limit component of A to R. If the value of A exceeds R, then A is

not changed, and an Overdraft error is raised with a parameter of type Currency that gives the

amount of the overdraft.

4.2.4. CurrencyList Type

An abstract type, CurrencyList, is used to represent an unordered collection of resources.

The operations are listed below:

4.2.4.1. CreateCurrencyList

function CreateCurrencyList return CurrencyList;

This function creates a currency list representing no rights (the empty list).

4.2.4.2. GrantCurrency

procedure GrantCurrency(CL: in out CurrencyList: C: in Currency);

If CL has no currency with the same name as C. then C is added as a new member of CL. If

CL has a member, m. with the same name, then m is replaced with Max(Value(m),Value(C)) in

CL. If m and C have different types, that is, one is set currency and the other is integer

currency, then CL is unaffected and the BadType exception is raised.

4.2.4.3. Iteration Ftu.;ctions

function Index(CL: in CurrencyList; N; Integer) return Currency;

function Length(CL: in CurrencyList) return Integer;

These functions are used to iterate through each component of a currency list. The

function Index returns the Nth currency record (based at one) of a currency list. Length tells

how many records are present.
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4.2.4.4. LessOrEqual

function LessOrEqual(CL 1, CL2: in CurrencyList) return Boolean;

This function returns true if no currency in CL I represents more resources than the

corresponding currency in CL2.

4.2.5. AccountList Type

The operations on account lists are CreateAccountList. Deposit, Withdraw. SetLimits,

GetLimits and GetBalance. These are defined below:

4.2.5.1. CreateAccountList

function CreateAccountList return AccountList;

This function creates an initial account list that contains accounts for each resource, with

all accounts initially having limits and values of zero (or the empty set for set accounts).

Obviously, the implementor of account lists will want to do some encoding to avoid allocating

an account for each of the infinitely many currency names.

4.2.5.2. Deposit

procedure Deposit(AL: in out AccountList; CL: in CurrencyList);

For each element C (of type Currency) in CL, this procedure locates an account in AL with

the same name as the name of C. A Credit of the value of C is then performed on this account

(see Section 4.2.3.5). If any credit to an account would raise the BadType exception, then no

changes are made to AL, and the BadType exception is raised.

4.2.5.3. Withdraw

procedure Withdraw(AL: in out AccountList; CL: in CurrencyList);

For each element C (of type Currency) in CL, the corresponding account'is found in AL and

a Debit operation is performed (see Section 4.2.3.4). As before, if any currency types do not

match, no changes are made, and the BadType exception is raised. If any account withdrawal

would cause an overdraft, then the account list is unchanged and an exception, Overdraft, is

raised with a parameter of type CurrencyList that specifies the extent of the overdraft.
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4.2.5.4. SetLimits

procedure SetLbirts(AL: in out AccountList; CL: in CurrencyList);

CL specifies a set of limits to be put in corresponding accounts in AL. If any new account

limits are less than the corresponding account values, Overdraft is raised with a parameter of

type CurrencyList that specifies the extent of the overdraft.

4.2.5.5. GetLimits

function GetLimits(AL: in AccountList) return CurrencyList;

This function returns the limits of all accounts in AL. Any account limit of zero or the empty

set may be omitted from the returned currency list.

4.2.5.6. GetBalance

function GeiBaance(AL: in AccountList) return CurrencyList;

This function returns the balance of all accounts in AL. Again, any balance of zero or the

empty set may be omitted from the returned list.

4.3. Basic Banker Operations

In addition to types defined in the previous section. the following types are used in the

interface to the Banker:

type Signature is new Port;

type Resourceld is new Port;

Type Signature is used to id-ntify a customer, and type Resourceld is used to represent a

resource. Both of these types are implemented as ports, since por t names are convenient

unforgeable identifiers, but this could be changed if another representation proved to be

more suitable.

As mentioned above, accounts are organized in a dependency tree. To simplify this

section, we will ignore this 3xtra complication. Details of dependent customers will be

presented in Section 4.4.
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4.3.1. Defining a Resource

Any process can create a new type of resource by issuing the following command to the

Banker6:

function CreateResourceType(Name: in String;
Server: in Port;
Resource: out Resourceld)

return GeneralReturn;

The Name parameter is a printname for the resource type. The server parameter contains

send rights on a port that is owned by the server that manages the resource. (This port is

used primarily to notify servers of exceptions.)

The possible results are:

Success Resource has the Resourceld that represents the new resource type.

Duplicate No resource type was created because a resource with the same name
already exists.

4.3.2. Creating an Account

A top-level account can only be created by a server that previously created a resource type.

The command to create an account is:

procedure CreateAccount(Custonier: in Signature;
Resource: in Resourceld;
Limit: in RightsValue);

An account is created for the customer with the initial value of zero (or empty set). The limit

on the account is specified by the Limit parameter. The Resource parameter names a

resource type created in a CreateResource Type operation. Since tesourceld's are ports, we

can make this parameter implicit by invoking the operation through the Resourceld port.

aMessage interfaces throughout this dissertation are expressed using a procedure call syntax. See Appendix A for
a description of the implied mapping between procedure calls and messages.
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4.3.2.1. Initialization

To initialize an operating system, an initialization program first creates the Banker process.

The Banker then creates a customer to represent all the local servers and the kernel. (Recall

that a customer is just a mapping from a signature to a list of accounts. A signature is

represented by a port.) An account is then created for this customer to allow the customer to

create new resource types. The signature is returned to the initialization program. As each

new server is created, the signature is passed as a parameter so that all servers have the

signature and can use it to get resources and create accounts.

Some special provision must be made so that the initialization program can create the

Banker, since the kernel will normally withdraw on an account before forking a process.

4.3.3. Withdrawals

Withdrawals are made using the following operation:

function Withdraw(Customer: in Signature;
Resource: in Resourceld;
Amount: in RightsValue;
Notify: in Boolean)

return GeneralReturn;

Again, if we assume Resourceld's are ports, we can make the Resource parameter implicit by

invoking the operation through that port. The Banker finds the account belonging to the

Customer parameter for the resource corresponding to the Resource parameter and attempts

to debit the account. The possible results are:

Success The account was debited. In the case of integer currency types, the
amount is added to the account value. For set currency types, the new
account value is the union of the old value and the amount.

NoSuchCustomer The signature is not valid.

Locked The accounts are locked because the customer is being deported (see
Section 5.5.1).

OverDraft The amount of the withdrawal exceeds the current balance in the account.
If notify is true, a message is also sent to the overdraft handler port for this
customer. (The handler for the "root" customer is the Butler. More
details on handlers are in the next section.)

Credits are made to accounts using the following operation:

" -. . ..- L, ,* .. .. ..
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function Deposit(Customer: in Signature;
Resource: in Resourceld;
Amount: in RightsValue)

return GeneralReturn;

The parameters have the same meaning as those for the Withdraw operation. The possible

results are:

Success The amount is subtracted from the customer's account value if it is of the
integer currency type. In the case of set currency types, any element in
the amount is removed from the account value.

NoSuchCustomer The signature is not valid.

NoSuchAccount The customer does not have an account for this resource type.

Locked The accounts are locked (see Section 5.5.1).

Balance inquiries can be made using the following operation:

function GetBalance(Customer: in Signature;
Balance: out CurrencyList)

return GeneralReturn;

The operation either returns the status of the customer's accounts, or an error message:

Success A currency list is returned that describes the balance of the customer's
account list.

Locked The accounts are locked (see Section 5.5.1).

NoSuchCustomer The signature is not valid.

4.4. Dependents

Dependents allow a customer to share his currency with other processes. Each customer

has a possibly empty set of dependent customers, and dependent customers can be nested

arbitrarily, so that the overall customer structure is a tree. The root of the tree is a customer

representing the operating system, and all accounts originally belong to the system.

Dependent accounts are created by the Butler whenever a new user comes into the machine,

either as a guest from a remote machine or as a user logging in through the terminal.

The accounts of dependent customers are like those of the root customer, except that each

has a parent account. The account limits can be used to set up several policies of account

ANN
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sharing. Two interesting cases are the account-split policy and the pooling policy. An

account-split policy partitions the account and gives a piece of it to each dependent. To

implement the account-split policy, limits are set on dependent accounts according to the

desired partitioning of currency. A pooling policy allows each dependent to withdraw as

much as he needs from the parent account. To implement the pooling policy, the limits are

simply set to infinity.

The simplest kir-1 of pooling policy is one where all dependents pool all of the accounts.

This can be accomplished by not creating any subaccounts at all. Instead, the signature of

the parent is shared by all participants in the pool. This is likely to be the standard action

taken when an application program forks.

To create a dependent, the following operation is performed:

function CreateDependent(Customer: in Signature:
Limits: in CurrencyList;
Handler: in Port;
Dependent: out Signature)

return GeneralReturn;

The Customer parameter identifies the parent. Limits is a list of records, one for each

account. The first element of each record is the printname of the resource, and the second is

the account value. The Handler parameter contains send rights on a port. A message will be

sent to this port if the new dependent tries to overdraw his account.

No currency is withdrawn from a parent's accounts when a dependent is created. The

CreateDependent operation merely creates a new signature which can be given restricted

rights to withdraw from the parent's accounts. The possible results are:

Success The dependent is created. A signature to represent the new dependent
customer is returned.

Locked The accounts are locked (see Section 5.5.1).

NoSuchCustomer The signature is not valid.
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4.4.1. Withdrawals On Dependent Accounts

A dependent account has a value that represents how much currency has been taken from

the parent account. This may never exceed the limit set for the account. Consider the case of

a root customer with one dependent. In this example, there is one resource type, (see Figure

4-1) and one account for each customer.

Value Limit

Root -> 10 120

Value Limit
Dependent ->1 0 J

Figure 4-1: A customer's account and dependent's subaccount.

Henceforth, we will not distinguish between customers and accounts, since there is a one-to- I
one correspondence in this simple example. The root account has the value 10, and a limit of

20. The dependent has a limit of 5 and an initial value of 0. This means the dependent has

not withdrawn any currency from the parent (root).

If the dependent withdraws 2, the new state is as in Figure 4-2. Notice that both the

dependent and root accounts are debited.

Value LimitRoot -- 12 20

f Value Limit

Dependent 2

Figure 4-2: The dependent has withdrawn 2.

Now, suppose the dependent creates its own dependent with limit 5. (See Figure 4-3.) The

new dependent account has the initial value 0. If the second dependent, called Dependent2,

were to withdraw 1 from his account the account values of the root, Dependent, and
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Value Limit

Root ->112 120bI

Value Limit

Dependent 2

I Value Limit

Dependent2 --->t I

Figure 4-3: Adding another dependent.

Dependent2 would be 13, 3, and 1 respectively. Instead. assume that Dependent2 tries to

withdraw 4 trom his account. The new account values would be 16, 6, and 4. This does not

exceed the limit of Dependent2, but does exceed the limit of the first dependent. The

withdrawal is not performed, and an overdraft message is sent to the server attempting the

withdrawal. If the withdraw operation's notify parameter is true, a message is also sent to the

overdraft handler of the first dependent. Notice that a message is sent to the handler for the

first dependent, even though the attempted withdrawal is from an account of Dependent2.

This happens because the limit of Dependent2 would not be exceeded by the operation, but

the limit of the first dependent (5) would be exceeded by one.

4.4.2. Access To Account Limits

The GetBalance operation is also defined for dependent accounts. The balance of an

account is the maximum withdrawal that can be made successfully. For integer currency

types, a recursive definition of an account balance is:

Balance(Account) = if Account is dependent
then Min(GetLimit(Account) - Get Value(Account),

Balance (parent's account))
else GetLimit(Account) - Get Value(Account)

For set currency type accounts, the definition is:
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Balance(Account) if Account is dependent
then intersect(GetLimit(Account),

Balance(parent's account))
else GetLimit (Account)

In addition to the GetBalance operation, GetLimits and SetLimit operations are defined for

subaccounts. The operations are defined as follows:

function GetLimits(Customer: in Signature;
Limits: out CurrencyList)

return GeneralReturn;

The possible return values are:

Success A list of non-zero or non-empty limits is returned.

Locked The accounts are locked (see Section 5.5.1).

NoSuchCustomer The signature is not valid.

Limits can be changed with the SetLimits operation:

function SetLimits(Customer: in Signature;
Parent: in Signature;
Limits: in CurrencyList;
Notify: in Boolean)

return GeneralReturn;

The Customer parameter identifies the customer whose limits are to be changed. The parent

parameter identifies the customer's parent. Only parents can change limits, so this parameter

must be included to authenticate the caller. The Limits parameter lists one or more limits to

be changed. Customer account limits are changed accordingly. If no account exists for

some record in Limits, a new account is created with the specified limit. If SetLimits attempts

to reduce an account limit below the current value, an overdraft error is reported. The

possible return values are:

j Success The account limits have been set as specified.

NoSuchCustomer The signature is not valid.

Locked The accounts are locked (see Section 5.5.1).

Overdraft At least one of the specified limits is less than a current account value. If
notify is true, an overdraft message will also be sent to the overdraft
handler for this account.
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WrongParent The parent parameter does not match the customer's parent's signature.

4.5. Server Protocols

There is a standard protocol to be observed by servers that use the Banker's accounting

services. The object of the protocol is to support deportation and resource revocation as well

as to provide uniform server interfaces.

4.5.1. The Server Interface

Servers are ordinarily located through a name server that holds a public port through which

any process can communicate with the server. To obtain service, a customer process first

sends his signature to the public port and requests the allocation of a private port. The server

allocates a private port for the customer and associates it with the signature. Requests for

servc3 are always sent to the private port, which serves to identify the customer.

In some situations, a customer sends a request to a server on behalf of some other

customer. It is then desirable to specify a signature with each request, so that a server can

use its customer's signatures when acting on their behalf.

A customer must also indicate if he is willing to handle exceptions raised when an account

is overdrawn. If so, the server will set the Notify parameter to false for withdrawals, and send

an error message to the user if an overdraft occurs. Otherwise, Notify is set to true, and

higher-level exception handling mechanisms are invoked if an overdraft occurs. This will be

described below.

The Banker itself is a server, and it to adheres to these guidelines for server interfaces. The

resources managed by the Banker are customer types and resource types. The operations

CreateResource Type, CreateAccount, and CreateDependent all have a Notify parameter to

specify how to handle overdrawn accounts, though this parameter was omitted from our

presentation for clarity.

Furthermore, since the Banker is a server, it can use itself recursively to protect against

malicious customers who, for example, might attempt to attack the system by allocating many

resource types. A resource type is considered a resource itself, and when a server requests
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the Banker to allocate a new resource type, the Banker consults the server's accounts to see

if the server is authorized to create a new resource type.

4.5.2. Server Actions

Before a server allocates an accounted resource, it performs a withdraw operation.

Ordinarily, the user will not handle overdraft exceptions, so the withdraw operation is invoked

with the notify parameter set to true. If Success is returned by the Banker, the server

continues providing service, but if OverDraft is returned, the server suspends all activity

associated with that particular customer. No error message is returned to the customer at this

point, and the Banker saves the reply port from the withdraw operation. This will be called the

server reply port. Further actions by the server are discussed below.

Since the notify parameter is true, the Banker will send a notice to some overdraft handler

with the following information:

1. The signature of the customer who is overdrawn.

2. A currency list to specify the amount of the overdraft7.

3. The server reply port.

When the server deallocates resources, a Deposit operation is performed to credit the

user's account with the resources that are being freed. With some resources, like CPU time, it

does not make sense to credit accounts, and resources P-e not necessarily conserved.

Deposits are ordinarily made only into integer currency type accounts.

4.5.3. The Overdraft Handler

When an overdraft handler receives a notice from the Banker, it can take several actions: it

can change the limits on the overdrawn account and ask the server to retry the withdrawal; it

can tell the server to refuse the operation; it can deport the customer; or, it can terminate the

customer.

7The currency list may have more than one currency value if the overdraft is the result of a SetLimits operation.
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4.5.3.1. Change Limits and Retry

For the first option, the overdraft handler can adjust the account limits by issuing a

SetLimits operation. The overdraft handler must know the overdrawn customer's parent's

signature to do this, so normally, the handler must be the parent. A Retry message is then

sent to the server reply port. The customer signature is included in this message to identify

the customer to the server. When the server receives the message, it repeats the Withdraw

operation. The overdraft handler may at this time also send a warning or other information

directly to the customer.

4.5.3.2. Service Termination

For the second option, in which the handler tells the server to deny further service, a

Refuse message is sent to the server reply port. containing the customer's signature. The

server aborts the service for that customer and returns an appropriate error message to the

customer. Notice that only one service is terminated and that this action has the effect of

returning the error handling task to the customer.

4.5.3.3. Deportation

The third option, deportation, is transparent to the guest. To deport a customer, a

DeportRequest message is sent to each of a guest's servers. The message contains a port to

which servers send state information associated with the guest. (Deportation is described in

Section 5.5.)

4.5.3.4. Customer Termination

The final option is to terminate the entire customer, that is. all services as opposed to some

one service. This is accomplished by sending an AbortRequest message to each of a guest's

servers. Unlike service termination, tfhere is no need for the server to send an error message

to the customer, since the customer process will also be terminated. (Termination is

described more fully in Section 5.6.)

One could also terminate a customer by killing the associated processes only, since servers

must be able to recover from customer deaths anyway. The use of the Banker is cleaner and

may be more efficient since servers are located directly rather than through propagation of

process death notices.
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Furthermore, if a guest gives its server connections to a process on a remote machine, then

killing all known guest processes may have no effect on servers. To illustrate this possibility,

consider a guest that has requested and obtained a resource, for example access to a mail

server. Before the guest is terminated, it sends a port to the mail server over the network to an

accomplice on a remote machine. The guest has effectively "laundered" his request so that

mail service can no longer be revoked, because killing the guest will still leave the accomplice

in possession of a mail server port. However, by using the Banker, the mail server will receive

an AbortRequest message, and service for the guest's accomplice will be denied. In summary,

the Banker allows the Butler to locate and recover all resources allocated on behalf of the

guest.

4.5.4. Implicit Service Requests

Processes implicitly invoke the operating system kernel as a server to provide address

space and processing time. The kernel interface must be augmented with a call to set the

signature on which withdrawals are made. This call must also include a notify parameter to

specify how exception handling should be performed. These changes allow the kernel to

charge customers for CPU time, virtual memory. and other resources managed by the kernel.

A computationally intensive server can charge CPU time to its customer by telling the kernel

to use the customer's signature.

4.6. Related Work

The Sue system [Sevcik 72, Atwood 72] uses a mechanism, also called the "Banker", to

prevent processes from usin,, more than their allotted resources, and to record billing

information on disk storage. The Sue system Banker implements only one level of indirect

sponsors (corresponding to our dependent accounts) and is not intended to provide the

capability-like protection offered by our Banker. The latter f6rm of protection is provided in

the Sue system via capabilities, which contain an optional numeric field for restricting the

number of times the capability is used to allocate a resource.

Janson's thesis [Janson 76] describes another quota system used to limit allocation of disk

pages and to perform accounting. Quotas are associated with subtrees of a hierarchical file

system (directories are interior nodes and files are leaves of the subtrees). This organization

is somewhat like the subaccount mechanism in our Banker, in that a user can create a

subdirectory (dependent account) and apply a quota (limit).
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4.7. Summary

The Banker is useful for a number of reasons:

1. The Banker provides accounting services for other servers. This simplifies the
servers, and allows them to share common operations. In addition. it provides an
identification service in that it maps signatures to accounts. A user does not
necessarily need to authenticate himself to each server, since his signature
serves as a capability.

2. Identities maintained by the Banker are abstract. The Banker does not associate
resources with any specific object such as a process. (human) user, or console
as is frequently done in current systems. Thus, the association of resources to
objects can be flexibly determined.

3. The Banker has many of the advantages of a capability-based protection system.
Signatures are analogous to capabilities, but the operations on signatures are an
extension to the normal operations provided on capabilities. Typically,
capabilities carry a small set of boolean values indicating rights. Signatures
effectively carry accounts tMat can be large sets of values that are not necessarily
boolean. The capability-like aspect of signatures allows users to pass subsets of
their rights on to subsystems by creating dependents. Users can provide their
own exceptionhandlers to be invoked if a subsystem tries to overdraw an
account. Therefore, policy ;s determined entirely outside the Banker. which
simply provides mechanisms for accounting.

4. The Banker contains all of the data structures necessary to map identities to
resources. Thus. it is possible, given a signature. to find all of the resources that
have been allocated for it. This is useful for recovering resources from a guest.

The next chapter will show Butlers negotiate to determine what rights a guest should

have. These rights are then used to establish accounts in the Banker for the guest.
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Chapter 5
Negotiation and Revocation

An important function of Butlers is to negotiate the terms under which resource sharing will

take place. The agent uses negotiation to inform a potential host of the resources required by

the client, and the host uses negotiation to establish limits to the amount of resources a guest

can use. It is during negotiation that the host consults current policy and creates capabilities

that can be used by the guest to obtain resources. Thus, negotiation includes the process of

authorizing a client to use resources on a remote machine.

The primary purpose of negotiation is to insure that the guest has the resources it needs to

run successfully to completion. Therefore, the host implicitly agrees not to revoke any

resources or rights that are granted to the client during negotiation, except under unusual

circumstances. When resources must be revoked, or when a guest exhausts the available

resources, some form of recovery action must take place. The Butler design includes three

forms of revocation to facilitate the development of distributed programs that can recover

from revocation. These are warning, deportation, and termination.

The first section below describes data structures used by Butlers to represent resources

and to specify operations. The following section presents the protocol for negotiation

between an agent and a host Butler. The host uses a policy database to determine what

resources to grant to a guest, and a simple implementation is described. Negotiation is also

concerned with how rights are revoked, and the end of this chapter is devoted to how this is

accomplished.
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5.1. Configu ration Specification

Before a remote operation can be invoked, there must be a specification of the requested

operation. The agent uses this specification to make a request to a host, and the specification

contains at least the name of the operation and the resources required. In general, the agent's

request will contain a configuration specification that names a number of system components

and specifies their interconnection. In a message.based system like Spice, the configuration

specification will name a number of processes that are to be interconnected by ports.

The design of a useful representation for configurations is beyond the scope of this

dissertation. Such a design would necessarily consider issues of naming, constraint

satisfaction, and human factors. The problem of configuration specification also arises in the

context of software development, and many of the issues are considered in Cooprider's thesis

(Cooprider 791. Future systems must address and solve this problem, and the solution should

be uniformly applied to software development, the execution of software systems, and the

invocation of remote operations.

For the purposes of this dissertation and for preliminary use in the Spice system, a simple

representation of configuration has been designed. Our goal is to demonstrate only a

representation that is sufficiently powerful to handle most requests, so we will not explore the

area of configuration representation in depth. Fortunately, the configuration specification is

only loosely coupled to the negotiation process, so the Butler can be easily modified to

accommodate changes in the representation of configurations.

A configuration specification must be capable of describing several aspects or dimensions

of a configuration. The most important aspect is the operation or service desired. For

simplicity, we will assume that the operation is implemented by a server process. The second

aspect is the need to pass parameters to the server that implements the operation. Third,

resource requirements must be specified, and finally, it may be necessary to specify additional

subsystems that are necessary to perform the requested operation. We will address these

four aspects below.
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5.1.1. Server Specification

The server that provides the desired operation is named by a character string, which is

translated by the Butler into a port that represents the server. The translation is facilitated by

a local name server, which translates names into ports. If no port corresponds to the name,

then the name server may have information that instructs the Butler how to instantiate the

appropriate server. In the simplest case, the name server returns a file name that is used to

locate code for the server. In the general case, a complete configuration specification is

returned.

If we assume that the name server returns a file name, then the Butler creates the desired

server by loading and executing the file. The server then sends a port to its parent, the Butler,

and the Butler enters the port into the name server for use in future requests. The result is

that the string name is mapped to a port name, and the appropriate server process listens for

messages sent to that port.

To allow arbitrary application programs to be invoked, one of the possible servers interprets

standard user.level operating system commands. To invoke an application program that is

not a server, the client invokes the command interpreter server and then gives it the command

to execute a program. The server provides the proper environment for the program, loads the

program, and executes it.

5.1.2. Parameter Passing

The second problem is the provision of parameter.passing mechanisms in the

configuration specification. This problem is solved by splitting invocation into two steps. In

the first step, a server is located and a port is returned. In the second step, the desired

operation is invoked by sending a request, including parameters, to that port. An alternative

would be to include parameters with the configuration specification and to have the Butler

send these parameters without interpretation to the server port. This alternative is rejected

because it rules out the possibility of invoking a series of operations or engaging in a dialog

with the server.
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5.1.3. Resource Specification

In Section 2.3.2.2, we developed a representation for resource requests. The important

characteristics of this representation are that it associates a value with each of many

resources, and the representation includes a specification of how revocation should be

handled. A problem with the representation, however, is that the resource types are fixed.

This would be acceptable if all machine resources of interest could be identified at an early

stage in the system design, but this is not a reasonable assumption. In fact, many resources

are likely to be abstract; that is, defined by a server but not corresponding exactly to any

physical resource. Therefore, a more flexible representation for resources is necessary. The

representation we will choose for resources is the CurrencyList type defined in Section 4.2.4.

CurrencyList replaces the previous definition of BasicRights, so type declarations for

BasicRights and GuestRights are:

type BasicRights is new CurrencyList;

type GuestRights(Warning: Boolean) is
record

InitialRights: BasicRights;
Deport: Boolean;
case Warning is

when True =
WarningRights: BasicRights;

when False = > null;
end case;

end record;

5.1.4. Environment Specification

The fourth problem of configuration specification is to find a suitable representation for the

environment in which a program should execute. The solution to this problem is dependent

upon how the system of interest represents environments. I will describe one approach which

is based on the use of the Spice Environment Manager (SEM) [Ball 82]. The SEM is a

specialized database manager that defines the environment of a process. An environment

consists of a set of name/value/type triples and possibly a reference to a parent environment

(the environment database Is tree structured). The SEM is thus a general-purpose

mechanism for exchanging values and parameters with a process. A port is associated with

each environment, and environments are always accessed via the corresponding port. Each

process Is given an environment port when the process is created, and the process queries

the SEM to read or modify its environment.
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For the purposes of configuration specification, we will take a somewhat limited view of

what is included in the environment. Our main goal is to make sure the environment includes

the resources that are necessary to complete the requested operation; for example, if a

compilation requires a file server, the environment must include a port through which the

compiler can access the file server. The environment will consist therefore only of server

ports that provide access to resources on the host machine.

The servers that are to be included in the environment can be specified in exactly the same

manner as the requested operation: a string is used to name the desired server. As before,

the Butler either locates a server port through a name server, or it creates the appropriate

server by translating the name of the server to a file that contains code for the server. The

environment specification must contain a name for each server to be included in the

environment. We can now write type definitions for environment specifications:

type EnvironmentComponent is
record

ServerName: String;
EnvName: String;

end record;

type EnvironmentSpec is array (Integer range >) of EnvironmentComponent;

The environmental aspect of a configuration is specified by a value of type

EnvironmentSpec which is an array of EnvironmentComponent records. Each record names

a server (which the Butler will map into a port), and provides a name to associate with the port

in the environment. To build an environment, the Butler obtains ports corresponding to each

server and eiters a name/value/type triple into an environment in the environment manager.

5.1.5. Server Ports

I have purposely omitted several details about the translation of server names to ports. The

translation process as described could give the same server port to several guests; however,

it is often desirable for a server to allocate a port for each guest rather than receive all service

requests on the same port. If a server allocates a separate port for each guest, then

revocation is simplified. The use of separate ports also simplifies the authentication of service

requests.

I •
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5.1.5.1. Public and Private Ports

A server port is typically entered in a name server so that other processes can

communicate with the server. This port is called the server's pub/ic port; access to the public

port does not convey any rights to service. To obtain service, a customer sends authorization

information to the public port and the server responds by allocating a new private port which

is associated with the customer. Send rights for this port are then returned to the customer.

Requests for service are directed to private ports rather than to the public one.

This organization has several advantages. The use of private ports allows the server to

identify the source of a request by the private port on which the request is received. The

server does not need to authenticate the incoming request, because only one guest was given

the private port, and ports cannot be forged. This is another instance of using ports as

capabilities. If notification is sent to the receiver when all send rights for a port have been

deleted, as is the case with Accent IPC, then the server can deallocate resources associated

with a private port when the customer disappears, even it the customer forgets to explicitly

close his connection. Another advantage is that the server can revoke service by destroying a

private port, or service can be transferred to another server by moving receive rights for the

private port.

5.1.5.2. Name-to-Port Translation

Our translation algorithm must be modified to deal with private ports. The host Butler

establishes an account for the guest and locates server public ports as described earlier. For

each public port, the Butler sends a message with the guest's signature to obtain a private

port. This message must be understood by all servers so that the Butler does not have to

have special knowl&-.o of each server and its corresponding message interface. As each

server returns a private port, the port is entered into the environment for use by the guest.

The name associated with the port in the environment is taken from the EnvName field of the

EnvironmentComponent record that specified the server name.
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5.1.6. Representing Configurations

A configuration specification must name an operation, describe an environment, and

enumerate required resources. A possible representation for a configuration specification is:

type ConfigurationSpec is
record

Server: String;
Environment: EnvironmentSpec;
Resources: GuestRights;

end record;

The ConfigurationSpec provides all of the information required to instantiate a remote

operation except for parameters. Once a port to the appropriate server is available, the client

invokes one or more operations by sending the operation name and parameters in a message

to that port.

Configu ration Guest
ServerSrver

Environment 5 n Pore

Resources ti
Environment

Manager

~Banker

Figure 5-1: A configuration representation.

It is the job of the host Butler to build a ConfigurationSpec by creating a configuration.
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Figure 5-1 illustrates a guest configuration. Access to the instantiation of a configuration is

represented by the following type:

type Configuration is
record

Server: Port;
Environment: Port;
Resources: Signature;

end record;

The three fields of the Configuration type correspond to instantiations of the fields of the

ConfigurationSpec type (defined on page 89). The Butler translates a string into a server port

as described earlier. The Butler interprets the EnvironmentSpec to obtain an environment in

the Spice Environment Manager. This environment is represented by the second field of the

Configuration record, which is is a port. The Resources field in the ConfigurationSpec tells

what Banker accounts are necessary for the guest, and the signature for these accounts

becomes the last field of type Configuration.

In summary, the host Butler accepts a specification for a configuration (type

ConfigurationSpec). Assuming the configuration is authorized, the Butler instantiates the

configuration and builds a configuration representation of type Configuration. The

representation is returned to the agent Butler, and can be thought of as a capability list, since

it contains ports that can be used as tickets to obtain resources and service.

5.2. Negotiation Protocols

So far', we have seen how configurations are specified, and how configuration

specifications are translated into configuration representations. We will now turn to the

protocols used to invoke a remote operation. Three processes are involved: the client, the

agent, and the host. Figure 5-2 diagrams the flow of negotiation messages between these

processes. Note that this is a slight elaboration of Figure 2.2. As in the description of the

Banker interface, messages will be described as procedure and function calls. Appendix

A describes the notation used. The client starts the protocol by making a call on the agent

Butler:
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Client I Agent I Host

call Invoke

- call AgentRequest

reply to AgentRequest

reply to AgentResponse

~reply to Invoke

Figure 5- 2: Negotiation messages.

5.2.1. Invoke (Client to Agent)

function Invoke(Request: in out ConfigurationSpec;
MinRequest: in ConfigurationSpec;
Where: in HostList;
TimeLimit: in Time;
CASPort: in Port;
WarningPort: in Port;
Guest: out Configuration;
GuestControl: out Port;
Remoteld: out Groupid)

return GeneralReturn;

The first parameter, Request, is a specification of the desired configuration. The parameter

MinRequest specifies the minimum amount of resources that are adequate to perform the

requested operation. MinRequest should not include any resources or environment

components that are not included in Request. The next parameter, Where, specifies a list of

host Butler names from which resources should be solicited. If the list is empty, the agent

Butler searches without constraints. In either case, a central name server is used to find host

Butlers. To avoid long searches for relatively quick operations, the parameter TimeLimit tells

the agent how long to search for resources. The Butler will need to prove the authority of the
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client to the host. The CASPort parameter is the client's login port (possibly with restrictions

applied); the host can use this port to determine the client's authority from the CAS. The

WarningPort parameter is the destination for revocation warning messages, and DeportPort is

the destination for deportation messages. Both the WarningPort and DeportPort parameters

may be null, indicating that the Butler should provide default handlers for warning or

deportation messages.

Several values are returned by the call. The actual list of resources granted to the client are

returned in Request. The configuration constructed by the host is returned in Guest. The

host associates a port with the requested operation, and this port is returned in the parameter

GuestControl. The client can obtain status information and control the guest via the host

Butler by sending messages to this port, and the requests that can be handled by this port are

described below. The parameter Remoteld is the unique user identifier of the remote Butler.

This identifies the person responsible for security at the remote machine.

The value returned by Invoke is one of the following:

Success A host was found that granted at least MinRequest resources. The
parameters Request, Guest, GuestControl, and Remoteld are returned.

NoHost No host was found to provide at least MinRequest resources.

Timeout The agent was unable to satisfy the request within the time limit.

5.2.2. AgentRequest (Agent to Host)

Upon receiving an Invoke message, the agent locates a host and issues the following call:

function AgentRequest(AuthHint: in GroupidList;
Request: in ConfigurationSpec;
HostPort: out Port;
Offer: out ConfigurationSpec)

return GeneralReturn;

The parameter, AuthHint is the group membership list of the client, and is derived from the

client's CAS port in one of two ways. In most cases the Butler will have handled the login of

the client to the CAS and will have obtained and cached the client's group membership list at

that time. Otherwise, the Butler will have to send a request to the CAS to get the list. The

purpose of AuthHint is to avoid going through the authentication protocol for each potential

host. If a host is willing to meet the agent's request, the protocol is performed to verify the

correctness of the hint.

____II [ I .. . j .. . . . . ..
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The next parameter, Request, is the configuration requested by the client'. Invoke

message. The host Butler queries its policy database to deterrine what, if any, of the

requested resources can be granted, assuming that AuthHjnt correctly represents the

authorization group membership of the client.

The configuration specification returned in Offer tells the agent what resources are

available. The possible values of AgentRequest are:

Success The host Butler has offered to invoke an operation. HostPort and Offer are
returned.

Refuse The host will not authorize the client to use any resources. HostPort and
Offer contain null values.

At the point where an offer is made to the agent, an authenticated connectioi required so

that the agent can determine who made the offer and the host can determint '-,hom the

offer is made. To avoid the cost of the authentication protocol, we will use technique

described in the last paragraph of Section 3.6.3; that is, ports are exchanged w -.- ,ecurity,

and will be authenticated at a later time. The agent's half of the connection is the reply port

for the AgentRequest message.8 corresponding to port PA in Figure 3-3. The host's half of the

connection is returned in the HostPort parameter, which corresponds to port P8 in Figure 3-3.

The agent compares the offer, if any, to the client's MinRequest to determine whether or

not to accept. The agent then replies to the host with the AgentResponse call described

below.

5.2.3. AgentResponse (Agent to Host)

function AgentResponse (Accept: in Boolean;
AgentKey: in Key;
ClientKey: In Key;
DeportationPort: in Port;
WarningPort: in Port;
Config: out Configuration)

return GeneralReturn;

To reject an offer, the agent sets Accept to false. This terminates negotiation with the host.

The agent then returns from the client's Invoke request with the value NoHost, or seeks

8As described in Appendix A, every call message has an implicit reply port.
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another host. The next two parameters, AgentKey and C/ientKey, are used in the

authentication protocol. The last two parameters, DeportationPort and WarningPort, are used

to handle revocation.

To accept an offer, Accept is set to true. The host then performs two instances of the

authentication protocol. The first uses AgentKey and authenticates the existing channel

between the agent and the host. The second uses ClientKey and is necessary to obtain a port

on which to reply to the AgentResponse message. After authentication, the host creates an

account, builds an environment, and finds or creates a server as specified in the Offer that

was returned to the agent through the AgentRequest call. Configuration construction is

described above in Section 5.1, and the resulting Configuration is returned as the last

parameter, Config. The reply message, containing Config, is sent to the port obtained from

the authentication protocol with the agent using C/ientKey.9

Meanwhile, the agent Butler has been participating in the two instances of the

authentication protocol with the host. When the protocols complete, the agent must be sure

that the identities obtained from each protocol instance are consistent. The agent then waits

until it receives a reply to its AgentResponse message. Next, the agent sends a reply to the

Invoke operation called by the client.

5.2.4. Additional Operations

The principal operations that are required for negotiation have now been described.

Several other operations are provided by Butlers.

9 1t may seem instead that the configuration should be sent to the agent's port, which was authenticated using
AgentKey. To see how this could lead to trouble, consider the case where a malicious Butler, called X, has just
received an Agentnesponse message from an agent called A. Now, X assumes the role of agent and requests some
third Butler (we will call this one V, for victim) tn perfoim some action. Butler X will lie to V, claiming that his client
has the same identity as that of A's client. Butler X will of course want to veidy the client's identity before giving any
rights away, but X cleverly passes along the ClientKey obtained from A. Butler V can now successfully perform the
authentication protocol using this "stolen" ClientKey, Now. if V returns a configuration to X, X will have tricked V into
providing a configuration for which X was not authorized. On the other hand, if V returns the configuration to the
port obtained using ClientKey, the configuration will be sent to A, not X. Butler A can then determine that X violated
the negotiation protocol (by giving away ClientKey), and the configuration at V can be aborted. This scenario also
illustrates that the configuration should not perform any irreversible operations until the cliert makes a request over
an authenticated connection. Furthermore, the agent should verity that the authentication protocols using AgentKey
and ClientKey are in fact performed by the same host.
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5.2.4.1. Deportation

The host expects a port from the agent on which deportation messages can be sent. This

port will be supplied by the agent unless the client furnishes his own in the Invoke operation.

The port can be changed to redirect deportation with the following message:

procedure SetDeportHandler(DeportationPort: in Port);

which is issued over the GuestControl port.

The client can force deportation using the following call, also issued to the GuestControl

port:

procedu re DeportStart;

5.2.4.2. Renegotiation

Additional resources can be requested by sending a NewRequest message to the

GuestControl port:

function NewRequest(Environment: in out EnvironmentSpec;
Resources: in out GuestRights)

return Genera/Return;

The Environment parameter specifies additional environment components desired by the

client, and Resources specifies additions to the current account limits set for the guest.

To perform this operation, the host consults the policy database and the current account

limits. If allowed by the policy, the guest is granted the additional rights.

The possible return values are:

Success The host has provided the guest with the requested rights.

Offer The host cannot grant all of the requested rights. The Environment and
Resource parameters are set to the maximum subset of the requested
rights allowed by the current policy. The client can reissue NewRequest
with the reduced rights if desired.

Refuse No additional rights can be granted.

. ..
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5.2.4.3. Status

To monitor the progress of a guest, the client can request a status report with the following

message:

function GetStatus(Report: out Status) return GeieralReturn;

Again, the function is invoked by sending a message to the GuestControl port. The only reply

(besides Error) is:

Success Report contains the requested status information.

5.2.5. Alternative Designs

The negotiation protocol as described above places the goal of stable expectations over

the goal of optimal resource allocation. In fact, no attempt is made to find the "best" site for a

given guest. Instead. the protocol is desigred to find only a host that will provide the

necessary resources. Negotiation also tells the host what resources the guest expects. I feel

that this protocol is appropriate for a system in which control is distributed and nodes are

autonomous personal computers.

Other protocols have been developed that assume greater cooperation between machines

and less machine autonomy. Examples are a protocol developed for DCS [Farber 73] and the

Contract Net Protocol [Smith 801. Both of these systems broadcast resource requests for

which potential hosts submit bids.

There are many minor differences between DCS, Contract Net, and Butler protocols. The

DCS and Butler protocols require the potential host to respond immediately to requests, but in.

Contract Nets, only idle nodes submit bids, and the node may wait for further task

announcements before making a bid. Butler offers, and Contract Net bids are binding, but

DCS bids can be retracted. Contract Net nodes can overallocate resources by bidding on

several tasks, but Butlers are expected to honor their offers. Only Butlers acknowledge

rejected offers (bids). Most of these statements about Contract Nets are not invariably true,

since there are a number of optimized protocols for handling special cases.

Each of these systems was designed for a slightly different purpose. DCS was intended to

be a reliable, shared, general-purpose computer system. Contract Nets was meant to be a

distributed problem.solving system, and the Butler is intended to facilitate sharing in a
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network of autonomous nodes. Very little experience has been obtained in this area, so

experimentation with the Butler and other protocols is warranted.

5.3. Policy Database

This section describes a simple policy database to be used by a machine owner to specify

what resources are to be made available to guests. When the host Butler receives an

AgentRequest message, it consults the policy database to determine what resources to offer

the agent. Recall from Section 2.4 that the policy database must implement the function:

Policy: GroupldList x Locality x Occupancy -- Rights

Data structures that are used in the policy database and its interface are first described. Next,

the operations implemented by the database are described. We will not design or describe a

suitable user interface to create and manage the database.

5.3.1. Data Structures

Rights are represented as currency lists. The database is conceptually an unordered set of

4-tuples that have the following components:

1. A user field of type Groupld.

2. A locality field, which contains one of (Local, Remote, DoNotCare).

3. An occupancy field, which contains one of (Occupant, Guest, DoNotCare).

4. A rights field, which is of type CurrencyList.

5.3.2. Butler Access

The Butler accesses the database with the call:

function GetPolicy(IdList: in GroupldList;
Loc: in Locality;
Occ: in Occupancy;
Rights: out CurrencyList)

return GeneralReturn;

where IdList is an array of user and group ID's, Loc is one of (Local, Remote), and Occ is one

of (Occupant, Guest). Multiple ID's are given because the user may be a member of a number

of groups, each of which can have different rights. In Spice, group membership can be
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determined from a central authorization server, which maps group ID's into lists of group ID's

by computing the reflexive transitive closure of the group membership relation. Other

systems support similar notions, and we have seen how this information can be obtained as

part of the authentication protocol. The value returned from the database manager is the

union of all rights obtainable by any entity identified in IdList.

The database manager saves the port used to reply to GetPolicy. If any changes occur to

the database, a notification is sent to that port using the following message:

procedure ChangeNotice;

This procedure is a warning that the database has changed, and previous policy information

may no longer be valid. A reduction of rights can thus be detected by the Butler without

polling the database.

5.3.3. Owner Access

Authorization to change the policy data is stored in the database itself. A machine owner

can change the database using the following operations:

function ExtendRig.hts(ID: in Groupid;
Loc: in Locality;
Occ: in Occupancy;
Rights: in CurrencyList)

return GeneralReturn;

functijgn DeleteRights(ID: in Groupid;
Loc: in Locality)
Occ: in Occupancy;

return GeneralReturn;

ExtendRights adds the rights given by Rights to the tuple whose first three fields are ID,

Loc, and Occ. A new tuple is created if none currently exists. The possible return values are:

Success The operation was performed.

Unauthorized The user is not authorized to change the database.

DeleteRights removes any tuples that match ID, Loc, and Occ. Locality and occupancy

values of DoNotCare may be specified to match any locality or occupancy value. The possible

return values are:

Success The operation was performed.
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Unauthorized The user is not authorized to change the database.

NotFound No matching tuples were found.

5.3.4. Discussion

Certainly, a more elaborate policy database could be designed. For example, one might

wish to make policy vary as a function of time or the current processing load. In this section, I

have only attempted to demonstrate a possible design and illustrate how the Butler interfaces

to it. Because the policy mechanisms have been cleanly separated from the mechanisms

provided by the Butler, one could give users their choice of several styles of policy database

without changing the rest of the Butler implementation.

5.4. Warning

To provide the greatest amount of flexibility in handling revocation, the client or guest can

provide an application-specific handler that is notified by the host when the guest exceeds its

resource limits. When the host receives an overdraft message from the Banker, it constructs

a warning message containing the amount of resources that the guest has overdrawn and the

current resource limits. The warning is sent to the port specified in the AgentResponse

message (see Section 5.2.3). Note that a warning is only sent if the Warning flag in

GuestRights is true. (GuestRights, defined on page 86, is a component of a

ConfigurationSpec, defined on page 89, which is the type of the Request parameter to Invoke,

defined on page 91).

The overdraft condition can be either the result of a server making a withdrawal or the host

restricting account limits to reflect a policy change. The warning message is:

procedure Warning(Overdraft: in CurrencyList
Limit: in CurrencyList);

When the host sends the warning message, the guest's current balance is augmented by the

guest's warning rights. This gives the guest some additional resources to use in its recovery

from revocation.

As an example of the use of warnings, consider a computationally expensive program that

can be checkpointed rapidly. If this program were to be run remotely, it could be designed so
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that upon receiving a warning message, the program sends its checkpoint information to a

supervising process on the user's machine.

The ability of the guest or client to supply application-dependent handlers is both an

advantage and a disadvantage. While warnings give the greatest flexibility to the client, they

also require that recovery handlers be programmed for each application. Furthermore, the

host has to trust the guest to heed the warning. In the next section, we discuss another

revocation mechanism, called deportation, that is transparent to the guest, and does not

require cooperation between the guest and host.

5.5. Deportation

The goal of deportation is to remove a guest from a machine, called the source machine,

and to reconstruct the guest at another target machine in a way that is transparent to the

guest. By "guest", I mean a configuration that is instantiated by the Butler on behalf of some

client, as described previously. Deportation is only performed if (1) the guest attempts to

overdraw an account, (2) the Deport flag was set in the GuestRights returned from the Invoke

operation, and (3) either Warning was not requested or the guest's warning rights were

exhausted. A guest contains state, uses resources, and includes not only processes but

connections to servers and state information maintained by servers. To deport a guest, the

guest's state must be encoded and separated from physical resources so that the resources

may be reclaimed. For the purpose of revoking resource rights, it is important to be able to

identify the resources that are used by a given configuration, including all of the servers that

have allocated resources on behalf of the guest. A few operations are implemented by the

Banker to facilitate the location of these servers, and will be described in this section.

Deportation can be separated into several steps. The first step is to locate the state

information that represents the guest. Second, the guest's state must be translated to a form

that is suitable to be transferred to another machine. The last step is the reconstruction of the

guest on a remote machine. These steps are described in detail below.
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5.5.1. State Location

All state associated with a guest is managed by server processes. As explained in Section

5.1.5.2, service is granted to a guest by sending a standard message with the guest's

signature to a server's public port. The message requests that the server allocate a private

port for the guest. After allocating the port, the server sends a PleaseNotily message to the

Banker. The message contains send rights for the private port and instructs the Banker to

remember the port and associate it with the supplied signature. As we shall see, the Banker

can be instructed later to send these ports to the Butler so that the Butler can locate all of a

guest's state. The structure of the PleaseNotify message is given by:

function PleaseNotify(PrivatePort: in Port;
Guest: in Signature)

return GeneralReturn;

The possible return values are:

Success The operation is complete.

To deport a guest, a message must be sent to each server containing part of the guest's

state. The servers of interest are those that previously registered a port using the

PleaseNotify message. The registered ports are retrieved in a two.step operation as follows.

In the first step, the guest's accounts and dependent accounts in the Banker are locked to

prevent synchronization errors between other servers that share the guest's signature. In the

second step, all ports registered with PleaseNotify and associated with the guest's signature

or dependents are retrieved from the Banker. The following function performs these

operations:

type PrivatePortRecord IS
record

Sig: Signature;
PrivatePort: Port;

end record;

type PrivatePortList is array (Integer: range <>) of PrivatePortRecord;

function LockAndRetrieve (Guest: in Signature;
Parent: in Signature;
PortList: out PrivatePortList)

return GeneralReturn;

Guest Is the signature of the guest. Parent is the signature of the guest's parent. To limit
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the power of malicious servers, only the parent has the right to retrieve a guest's private

server ports from the Banker, and Parent serves to authorize this operation1 ° . If the call

succeeds, PortList is returned containing a list of pairs of ports. The first element of each pair

is a signature, and the second is a private port that some server associated with the signature.

These are exactly the parameters necessary to invoke a DeportRequest operation.

To perform LockAndRetrieve, the Banker first sets a lock on the guest's account and on the

transitive closure of the guest's dependent accounts. The lock prevents any further

operations using the guest's signature or any of its dependent's signatures. The Banker then

assembles the ports associated with these signatures (as a result of PleaseNotify operations),

and returns them to the Butler. The possible return values are:

Success The operation succeeded, and PortList was returned.

Unauthorized The Parent parameter is not the signature of Guest's parent. The
operation was not performed.

If a process attempts any operation provided by the Banker, such as Withdraw or

PleaseNotify, after i signature has been locked, then the Banker does not perform the

operation and returns Locked. A server should assume that a deportation is in progress and

wait for a DeportRequest message.

5.5.2. Deport Request

We have seen how a guest's state may be located by having each server register private

ports with the Banker. Servers themselves are responsible for encoding the guest's state

when requested by a DeportRequest message.

A server must always be prepared to accept a deport request message on a private port,

and the same form of message is sent to all servers:

procedure DeportRequest(Guest: in Signature; WhereTo: In Port)

The parameter Guest provides the signature with which the private port was registered in an

l0 -lowever, if the parent and one of its dependents both give their signatures to a malicious server, the server
could, by trial and error, construct a valid LockAndRetrieve message, so the Parent parameter does not provide a
truly secure authentication of the parent. To achieve complete security, the Banker could, for each dependent, issue
the parent a special port on which to invoke LockAndRetrieve. I feel that this extra effort is not worth the additional
security, given the number of other ways a malicious server can wreak havoc upon a guest.
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earlier PleaseNotify message. If a server allocates a new private port with each guest, the

parameter is not strictly necessary, but it is conceivable that a server might use the same port

for more than one client, in which case the signature is necessary.

The second parameter, Where To, specifies a port to which the guest's state is to be sent.

Upon receiving the DeportRequest, the server encodes the guest's state and sends it as a

message to this port. The encoding operation is described below.

Notice that any process with the guest's signature and send rights to the guest's private

port can request a server to deport a guest. In particular, the guest itself can arrange to

deport all or part of itself. The more interesting case. however, is deportation without any

specific preparation or active participation by the guest itself. This capability allows a host

Butler to deport a guest without detailed knowledge of the guest's configuration, and it also

allows deportation of untrusted configurations. Since in general, the host knows nothing

about the guest, it is not sufficient to send a "please deport thyself" message to the guest.

What if the message is ignored? If the Butler can locate the guest's servers, then a

deportation can be ordered directly without relying on a guest's cooperation. Of course, the

Butler still has to rely on servers to carry out the deportation.

5.5.3. State Encoding and Decoding

When a server receives a DeportRequest it assembles a server-dependent deportation

message, which encodes the current server state associated with the guest. This message

will be sent to a deportation server which will reconstruct an instantiation of the guest on

another machine. The job of the deportation server is to look at a header section of each

message to determine what kind of server generated the message. Then, a corresponding

server is located or constructed at the target machine. The message is forwarded to this

server, which is expected to be able to interpret the message and reconstruct the guest's

state. The deportation server should not need information specific to servers because that

would require modifications to the deportation server whenever a new server is created.

A deportation message has two parts. The first part is a header that names a server. The

server specification is another form of configuration specification. For the purposes of this

dissertation, a simple character string will suffice. The second part of the message is

everything that follows the header. The format of this part is server.dependent, and is
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determined by the designer of the server. The only requirement is that the format must allow a

server to encode the guest's state and allow the receiving server to decode the state in a

manner that is transparent to the guest.

5.5.3.1. A Server Model

To illu3,rate the way deportation messages are constructed, we will examine a simple

abstract model of a server process, and see how a guest's state can be represented. From

the viewpoint of the guest, the server behaves as indicated in Figure 5-3.

loop
receive M from P(Sg,. r) - f(S 9, 4
send r

end loop

Figure 5-3: Abstract state-transition server model.

In this model, P is the guest's private server port. and S is the state of the guest maintained

by the server. When the guest sends a message M to the server, the server evaluates (Sg , M)

to determine the next state and a set of output messages r. The server is thus described by a

finite-state machine, where inputs and outputs are messages. This will be called the abstract

state-transition model.

It is important to note that the model is only an abstraction of the server. The

implementation of the server might look more like Figure 5-4.

0) loop
1) receive M
2) g 4-- M.FromPort
3) (C S , r) +- f(C, S9. M)
4) send.f
5) end loop

Figure 5-4: Model of a server implementation.

In this figure, the fact that the server deals with multiple guests is made explicit. After

receiving a message (line 1), the server determines the private port from which it came (line

2). The service function, f, is used to change the state of the corresponding guest (line 3) as

before, but additional state, C, is also changed. C represents state that is shared by all

guests. Although this information is hidden from the abstraction seen by guests (as in Figure

5-3), it may be necessary for an implementation. For example, resources may be allocated

from a common pool described by C.
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Given an implementation like that in Figure 5-4, it is not obvious how to extract a guest's

state. Obviously, the state includes S and Pg, but C must also be examined and probably

modified when a guest is deported. C must be left in a consistent state to avoid adversely

affecting service to the remaining guests. Another problem is that the state S may not beg

meaningful outside of the context of a particular server instance: for example, it may contain

absolute addresses as pointers, etc. Even if S were meaningful outside of the server, it mightg

be very difficult for the target server to check the consistency of Sg, and importing random

state information could be very dangerous to the target server.

The solution to these problems is to use the abstract state-transition model rather than the

actual server implementation to specify the guest's state. The deporting server translates the

guest's real or implementation state into a representation that corresponds closely to the

guest's abstract state. The point of this encoding is to remove implementation-specific

information from the guest's state and to encode a high-level representation of the guest that

can be easily and safely imported by another server.

When a guest is imported, the importing server must be very careful to check all state

information for consistency. The information is not trustworthy, and the state is more

complicated than typical server requests, which must also be carefully screened. One way of

simplifying the problem is to decompose the import operation into a number of lower-level

operations that can be invoked through the ordinary server interface. This is only possible if

none of the guest's abstract state is hidden by the server interface, which is a still higher level

of abstraction [Parnas 75). If each lower-level operation is checked by the server, then the

server is protected against forged state information.

A study that is relevant to this recommendation on server interface design is by Kapur and

Mandayam [Kapur 80]. In this study, three kinds of operation sets for data abstractions are

defined: expressively incomplete, expressively complete, and expressively rich. The first kind

of set does not have sufficient operations to translate the value of the abstract data into some

other form, say integers, and back again. An expressively complete operation set permits the

translation, but not necessarily in a practical sense. Finally, an expressively rich operation set

allows the values of the type to be translated to other types in a practical sense. As an

example, in the current Accent kernel, to discover the pages of an address space that

represent valid memory, a process must inspect each of the 223 possible pages. The interface

is complete, but not rich because it is possible but not practical to translate the address space

into another form (for instance, network messages).
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5.5.4. Supervision

To make sure that a guest is deported expediently, all guest state should be sent from

servers to the host. The host can then forward deportation messages to the deportation port

furnished by the agent. The host should place a time limit on the delivery of messages so that

they are not just transferred to the network server where they continue to use local virtual

memory.

The host must also be careful it network servers implement a "lazy evaluation" message-

passing protocol, where data is not sent until it is actually needed at the destination. Some

cooperation with the network server is again necessary to prevent deportation messages from

occupying local virtual address space for an arbitrary time.

5.5.5. Example

To illustrate these concepts, we will consider how the Spice Environment Manager (SEM)

can deport guest environments. First, the abstract state-transition model of the SEM and a

possible implementation of the model are described. Then we will discuss how guests are

deported and imported. For this example, a simplified version of the SEM is considered to

avoid describing irrelevant details.

5.5.5.1. Model of the Spice Environment Manager

The state S of a guest g consists of a set of name/type/value triples. Messages from the

user can add a triple to the environment, delete a triple, store a value into the triple with a

given name, and retrieve the value of a.triple with a given name. We will not concern

ourselves here with parent environments or other SEM operations.

5.5.5.2. Implementation

A possible implementation of the SEM uses a binary tree to represent each environment.

Each node holds a triple and two pointers to other nodes. A hash table is used to map private

port names to a binary tree representing an environment.
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5.5.5.3. Deportation

To deport a guest, the SEM must generate a representation of the guest's abstract state,

which is a private port and a set of iriples. A representation for the triples can be generated

easily by walking the binary tree and writing a list of suitably encoded triples into the

deportation message. Notice that no information about the binary tree structure is deported,

nor is any information relating to the hash table deported. These implementation structures

have nothing to do with the guest's abstract state.

5.5.5.4. Importation

When the target server receives the deportation message, it first enters the private port into

its hash table and initializes the hash table entry to the empty environment. Then, for each

triple in the deportation message, the server invokes its own InsertTriple operation. This

operation checks the triple for such things as legal name syntax and a match between the

type specification and value. The operation also checks with the Banker to make sure the

guest environment is not so large as to exceed an account limit.

By decomposing importation into a number of Insert Triple operation, we can have a greater

confidence that the server state cannot be corrupted by a forged deportation message. Since

InsertTriple is already part of the SEM. the extra implementation effort to perform importation

is minimized.

5.5.6. Discussion

The goal of deportation is to provide a mechanism for recovering from the revocation of

resources in a manner that is transparent to the guest. Deportation is an operation that may

not always succeed. Some servers do not fit the abstract state- transition model, and state

information may not always be machine-independent. In the example above, the problem of

hierarchical environments was purposefully avoided. If several guests share access to a

top-level environment, it may not be possible to deport a guest transparently. Another

example is the deportation of a guest with a file open on the local disk. If the file is simply a

cached copy of a file known globally, there is no problem, but if the file is meant to be kept

only locally, the guest cannot be deported from the local file server. There is no general

solution to these and similar problems. Server designers should try to make deportation

succeed in most cases, and provide a clear specification of the conditions that will cause

deportation to fail.
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Finally, it should be remembered that deportation is only one of several available recovery

techniques. The guest is not forced to use it, and a more general technique based on

revocation handlers provided by the guest is available.

5.6. Guest Termination

It warning and deportation were not requested, or if they fail, the host can revoke resources

by terminating the guest. The location of the guest's state is determined exactly as in

deportation, using LockAndRetrieve. The host then sends the following message to each

server containing some of the guest's state:

procedure AbortRequest(Guest: in Signature);

The message is sent to the guest's private server port. When a server receives this message,

it first verifies that the signature matches the one presented when the private port was

allocated. The server then deallocates the private port and the associated guest's state

information.

5.7. Summary

In this chapter, we have focused on the process of borrowing and giving up shared

resources. It is here that protection, autonomy, and sharing strongly interact.

The representation of resource requirements is essential to the task of negotiation, and a

simple scheme of configuration specification was described for this purpose. The proposed

representation does not solve all of the problems of configuration specifications, however,

and this is an area that requires further investigation.

Negotiation is performed in order to establish an agreement between the agent and host

Butlers on the amount of shared resources and the terms under which resources may be

revoked. Authentication is used so that if the agreement is violated, the exploited party can

identify the offender.

Negotiation also establishes what actions will be taken when a guest exhausts its resources

or when a policy change dictates that a guest cannot continue executing with its present

resources. The programmer has several options that simplify the task of writing reliable

software. A warr,ing is the most flexible option, but it requires application-specific handlers to
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be written. Deportation is a higher-level option that is application-independent, but perhaps

less efficient and certainly less flexible. Termination is simple, but may make recovery in a

distributed program more difficult. These options can be used hierarchically, that is, the first

may be attempted, and if it fails, the second is tried, and so on.
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Chapter 6
A User Interface

One of the goals of the Butler design is the support of load leveling. If a user is using most

of the computation power of his machine while other machines are idle, it may be desirable to

run some tasks on a remote machine. To make this form of load sharing practical, we must

design a system that allows a user, working at the operating system command level, to easily

run a program on a remote machine. Furthermore, the environment on the remote machine

should be sufficiently close to the local environment that no special coding or recompilation is

necessary to run a program remotely.

This chapter addresses the problem of designing a user interface to the Butler that allows

the user to execute programs remotely. Even without this user interface, the Butler would be

valuable for use with distributed parallel rrograms and programs for exchanging information,

as described in Chapter 1. However, support for load leveling is important, and the

requirements of transparency must be considered carefully.

6.1. Introduction

Two approaches can be taken in describing a user interface for the Butler. The first is to

describe various aspects of the interface in general terms to avoid specifics that might not be

applicable to every system. The second approach is to present a more detailed description of

an interface as it would appear in a specific system. I have chosen this second approach

because it affords the the opportunity to look at problems encountered in a real system.

Actually, so much background information would be required to describe the Spice operating

system environment, that the user interface cannot be described in great detail, and only the

main technical problems are presented. The goal of this chapter is to outline the

implementation of a user interface and to convince the reader that a successful interface can

be built.
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Before describing how to execute programs remotely, we must first see how programs are

executed locally. Then, we will see how an equivalent execution environment can be

constructed on a remote machine with the help of the Butler.

6.2. Local Program Execution

In Spice, a program is instantiated by loading a file containing the code for the program and

forking the loader process to create a separate thread of control and a separate address

space. A set of ports is passed to the new program, including an environment port and a

signature. The environment port is a capability that authorizes access to an environment

maintained by the Spice Environment Manager (SEM) [Ball 821. The signature is a capability

for the resources available to the new program, as represented in the Banker.

6.2.1. The Environment Manager

In previous chapters, the SEM has been described as a database of name/type/value

triples. In addition to the database component, the SEM contains another component called

the forms interpreter. The purpose of the forms interpreter is to provide a standard user

interface to application programs and to service an interactive display window.

The forms interpreter uses a template called a form to specify the user interface of a

program. The form describes the components that are expected to be in the environment

database, and specifies how database components are to be displayed. For example, an

integer in the environment might be displayed as text, as a bar graph, or some other graphical

display. The form also specifies which components of the database can be updated by the

user. Some components may only be written by the application program, some only by the

user, and some may be written by both. The form includes the name of the application

program to which it corresponds.

Programs are normally invoked by sending a form to the forms interpreter. The forms

interpreter creates an environment, obtains and initializes a display window, loads the

application program, and starts its execution. The normal mode of interaction with the display

is through the forms interpreter. When a program needs an input parameter, a request is sent

to the environment port for the parameter. If the parameter is not yet defined, the forms

interpreter is notified. The forms interpreter then prompts the user for the required value. The
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value is entered by the user and stored into the environment, and the SEM returns the value to

the application.

6.2.1.1. Environment Hierarchy

The environment database consists of hierarchically organized environments. Recall that

values are accessed by name; if a program tries to read the value corresponding to a name

from its environment and there is no entry for that name, then the environment manager looks

in the parent environment. If the name is still not found, the search proceeds to the next

parent, and so on. This allows a parent process to make its environment available to one or

more subsystems without actually copying values into subenvironments.

6.2.2. The Terminal Manager

The terminal manager is a server process that manages human input and output devices

such as the keyboard, pointing device, and display. A process communicates with the

terminal manager through Accent IPC messages.

The terminal manager interface is designed to hide many of the specific characteristics of

the physical display and keyboard. For example, display coordinates are described in terms

of an abstract coordinate space rather than in terms of physical screen pixels. The terminal

manager interface has another advantage in that it also hides the location of the physical

display and keyboard. Since all input and output operations are invoked via messages, a

program and its terminal can easily be located on separate machines.

In Spice, an interface process called Canvas already fills most of the requirements for the

terminal manager. The major component not present is a window manager that can allocate

screen space at the request of a process. In Canvas, a process can only subdivide windows

that it already has. On the other hand, the window manager treats the screen as a resource

and uses the Banker to determine whether a process is allowed to allocate a window and

receive input from the keyboard or other devices.

• .,~i. ' . . . . .. . . . .. . . . i ,. , ,,,., i A
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6.2.3. Interconnection

The typical configuration of an application program, its environment, and the window

manager is illustrated in Figure 6-1. Initially, the forms interpreter has a port through which it

can send messages to the terminal manager, and the shell or system command interpreter

has a port through which it can send messages to the forms interpreter.

Aplication

Figure 6-1: Port connections associated with an application program.

The shell invokes an application by sending a form (or perhaps the name of a file that

contains a form) to the forms interpreter. The shell also sends a signature to provide access

to resources for the application program. The forms interpreter reads the form to obtain a

specification for the required display window, and then sends a message to the terminal

manager to allocate a window. The forms interpreter initializes the window and an
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environment according to the form, and starts the execution of the application program. A

port to the environment is passed to the application program When it is started.

6.3. Remote Program Execution

Our problem is now to show how this sort of configuration can be invoked from a local

machine and instantiated remotely. The local terminal manager should be used so that the

user can interact with the remote program in the same way he would interact if the program

were executed locally. All other components of the program configuration should be

instantiated on the remote machine.

Remote program execution is supported by a local process called the client server, which

interfaces the user to the agent Butler. The client server uses the agent Butler to locate

resources at a remote machine. The client server then communicates with a forms interpreter

at the remote machine to invoke the desired application program.

6.3.1. The Client Server

As indicated in earlier chapters, the interface to the Butler is not trivial, and the casual user

will need some assistance even to run simple applications on a remote machine. The job of

the client server is to insulate the user from most of the details by supplying default values

where possible, and a user-oriented command interface to obtain the remaining information.

The client server is invoked by the shell and uses the environment and terminal managers just

like any other application to interact with the user, (Alternatively, the client server functions

could be incorporated into the shell, if desired.)

The client server gets information from the user and constructs a configuration

specification that names the forms interpreter as the required server. Assuming the Bv'ler

can find a suitable host and return a configuration to the client server, the client server must

now send local terminal manager port to the remote forms interpreter. To authorize use of the

local terminal, the client server also sends a signature to the forms interpreter. Now the client

server can start the application requested by the user by sending a form to the remote forms

interpreter.
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6.3.2. The Forms Interpreter

The forms interpreter can now be described more comprehensively. The forms interpreter

is a server whose job is to create an environment and an interactive display window for a

program, to start the program, and to serve as an interface between the window and the

environment. Like other servers, the forms interpreter normally has a public port entered in

the name server so that the Butler and other programs can locate it and obtain private ports.

Ordinarily, the forms interpreter will use the local terminal manager to interact with the user,

but an alternate terminal manager can be selected by sending its port and a signature

authorizing its use to the forms interpreter. In this way, a client server can divert a remote

forms interpreter's terminal input and output to the local machine.

The forms interpreter handles several message types that invoke programs. The standard

message contains the name of a file that contains the form to be used. The form in turn

contains the file name of the program to be executed. In some cases, the form and possibly

the program will not be available directly as files. For example, the desired form and program

may be on a remote machine. In these cases, the form and program may be included in the

message.

6.3.3. Environment Protection

It was mentioned earlier that the hierarchical structure of environments helps a parent

process to provide an environment to subsystems, since the environment manager will

automatically look in a parent environment if the required information is not found in the

current environment. This can be a problem if the parent does not want the subsystem to

have access to its data. A simple solution is to allow the parent to disable all access by a

subsystem when the subenvironment is created. This might be appropriate for guest

processes that might otherwise make random probes for values such as ports and other

capabilities.

More general approaches are possible. Entries in an environment could be individually

marked as accessible or non.accessible to environments at lower levels. Access lists could

also be associated with entries, or the environment manager could even be replaced by a

general purpose database. Experience is needed to determine whether any of these more

elaborate schemes are necessary. The simple approach of the previous paragraph is

probably adequate.
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6.3.4. Example

To illustrate how remote invocation is performed, we will consider a user who wishes to

perform a remote compilation. To simplify our presentation, we will assume that a typescript

interface to the forms interpreter is used, although a menu- or editor-based interface could

also be used. The user first tells his forms interpreter to run the client server program. The

client server prompts the user for the name of the program to be executed, and allows the

user to specify the resources he needs and his choice of host machines. For this example, we

assume that the user has simple requirements and takes the defaults provided by the client

server. The display might lock like the following (commands typed by our user are in italics):

>clientserver
ClientServer V. 0.0
>>runremote
command? compile demo.ada
host? any
resources [<CR> for defaults)?

If the client server is invoked as a parallel task, the user can perform other activities at his

local machine while waiting for the compilation to finish.

The client server constructs an Invoke message (described in Section 5.2.1) that names the

forms interpreter as the desired server. The message is sent to the local agent Butler which

locates a host and returns a configuration to the client server.

At this point, the remote forms interpreter has no access to the local machine, so it cannot

communicate with the local terminal manager. The client server uses the client's signature to

obtain a private port to the local terminal manager and sends this port to the remote

environment manager.

The client server can now send a form and a program (or their file names) to the forms

interpreter. The signature provided in the guest's configuration accompanies the message to

authorize the resources that will be used by the compiler. The resulting interconnection of

client server, terminal manager, forms interpreter, and compiler appears in Figure 6.2.

The client server implements two other operations:

status Print the current status of the remote task.

abort Halt the execution of the remote task.
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Figu re 6.2: Executing a remote application program.

6.4. Summary

A convenient user interface is essential to make resource sharing for load leveling

practical. A program like the client server can perform most of the work of invoking a remote

operation in simple cases.

It is important to structure the system so that ordinary programs can be executed remotely

without reprogramming. In particular, a message-based IPC facility can be used to hide the

location of a process from its terminal and other resources.

The environment manager must be designed carefully to support the client server. It must

be possible for the environment manager to direct input and output to several terminal

managers to handle multiple user locations. Also, environments must be protected from the

users of subenvironments.
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Chapter 7 I
Evaluation and Conclusion

We begin this chapter with a preliminary evaluation of the design presented in the previous

chapters. Included in this evaluation is a description of a partial implementation of the Butler.

The second part of this chapter summarizes what we have learned, presents some concluding

remarks, and describes some important areas for future research.

7.1. Evaluation

The design presented in the previous chapters has been developed with the goal of

supporting resource sharing in an environment consisting of autonomous personal machines,

several trusted central facilities, and a high-speed interconnecting network. The principal

concern and overriding philosophy has been to provide as much protection and autonomous

control of machines as possible, even in cases where simpler control or less protection would

lead to a more efficient system. On the other hand, the design does strive for efficiency

whenever possible; for example, the Butler is generally used only at the beginning of a remote

operation. Thus, an evaluation of this design should consider its level of support for sharing,

support for autonomy, and efficiency. In addition, an evaluation should assess the system's

ease of use, since it is only valuable if people use it. In the following sections, we will consider

each of these four properties in turn.

7.1.1. Support for Sharing

The Butler design is fairly conservative in its support for sharing. It allows great generality

in the sorts of operations it can invoke, but this is achieved by avoiding any special purpose

functions, such as atomic transactions, which might in fact be quite useful. Consequently, the

Butler must be augmented by programs that actually perform the desired operations. This

leads to a more modular system, but it may make the programmer work harder to construct a
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resource-sharing application. An exception to this philosophy is the Butler's support for

recovery from revocation, which is provided because the Butler's recovery mechanisms

would be much more difficult to implement at the level of the application program.

On the other hand, there is little in the Butler design that forms an obstacle to the

construction of resource-sharing applications. Such applications are free to use any existing

server, or to create new processes. Furthermore, once a configuration is instantiated, the

Butler places no restrictions on the way in which the application's components communicate

or invoke internal operations. A variety of potential applications was discussed in Chapter 2.

The Butler design also supports resource sharing by protecting machine owners from

malicious borrowers. Without this protection, owners would be reluctant to allow shared

access to their machines. To summarize, the Butler supports sharing by providing primitives

to invoke remote programs or servers, and by protecting resource sharers. While this support

seems to be adequate, experience with a full implementation and a community of users will be

required to determine if the Butler supports sharing in a practical sense.

7.1.2. Support for Autonomy

The Butler design takes an aggressive approach to the support of autonomy, and much of

the design is concerned with mechanisms that enable a machine owner to control and protect

access to his machine. Several components of the design work together to provide

substantial protection for resource sharers, and in the following paragraphs we will evaluate

these components in terms of the kind of protection provided, and the extent to which

autonomy is supported.

The first component we will consider is secure network messages. Using the protocol

presented in Chapter 3, any two network servers can obtain a secure channel for

communication. The only requirement is the presence of a trusted intermediary, in this case,

the Central Authorization Server (CAS). In particular, the network servers need not trust any

other system components such as the network itself, other network servers, or inter-network

gateways. Autonomy is supported by the facts that an independent and secure channel is

established between each pair of communicating machines, and that machines only need to

trust the physically secure CAS.

The second component is a protocol for establishing a secure and authenticated
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connection based on ports and IPC messages. This protocol is based on the security of

underlying network messages, and has similar characteristics with respect to autonomy,

except we must remember that ports are implemented by (and depend upon the security of)

the operating system. A user should therefore be careful not to give his rights (represented by

his CAS port or his password) to an untrustworthy operating system.

The third protection component is the Banker, which is used to keep track of resource

utilization after a guest has been instantiated. An independent Banker process executes on

each machine, so the Banker certainly supports the concept of autonomy. Furthermore, the

accounts that enable a configuration to obtain resources are determined by local machine

policy that is controlled by the machine owner. The Banker is a part of the local operating

system, and the security of the Banker does not depend upon any processes outside of the

operation system, again in support of autonomy.

Finally, we come to the Butler itself. Like the Banker, a separate Butler process executes in

each machine, and the host Butler does not depend upon the correct functioning of any other

Butler to provide protection for its owner. The agent Butler, however, cannot guarantee that a

guest will not be exploited by a malicious host. but it can at least make the identity of any host

it deals with known to the user. In this way, social mechanisms can be used to discourage

maliciousnous. In either case, the user must only trust in his local operating system and in the

security of the CAS. The policy that controls sharing on a machine is determined completely

by its owner, and no global operating system or higher authority is used to control sharing;

therefore, machines are highly autonomous.

7.1.3. Efficiency

One must be cautious in evaluating the efficiency of the Butler design, since the important

question is not "how fast can a user invoke operation X on a remote machine?", but "is the

overhead of the Butler justified by its support for security, autonomy, and programmer

convenience?". The latter question can be answered only through experience with an

implementation; but on the other hand, it w(,jld be foolish to implement a Butler without

carefully examining the issues of efficiency. In this section, we will consider the work required

to perform the basic functions of the Butler and Banker. These functions are negotiation,

banking, and deportation.
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7.1.3.1. Negotiation

From the negotiation protocol described in Chapter 5, it can be seen that a fairly large

number of messages is issued and that little computation is involved in negotiation, with the

possible exception of accessing the policy database. We will assume that the cost of

negotiation is dominated by inter-machine messages, since it seems likely that this will be the

case.

The cost of sending IPC mes.ages between machines in turn depends on how these

messages are mapped onto -:,derlying network-level messages. which must include

ackiowiedgements. retransmissions, flow control messages, and port status information. To

avoid considering these unknowns, which are largely implementation-dependent, we will

simply ook at the number of inter-machine messages at the IPC level, and count the 'umber

of IPC ports delivered.'

Starting with the Agentfequest message (see Section 5.2), and ending with the reply to that

message, there are 12 inter-machine IPC messages. This figure includes 8 messages

required for two instances of the connection protocol of Section 3.6. In addition, there are 15

ports sent between machines. The actual cost of these operations is not presently know,., but

it should be easy to measure the cost of the connection protocol when the Spice

Authentication Server is implemented.

Once negotiation is complete, it is necessary for the client to invoke an operation using the

server, signature, and environment ports returned by the host Butler. This may actually cost

more than negotiation, since programs and data may need to be transferred over the network

to the remote machine. The actual cost depends upon the natuie of the remote operation and

on the amount of data that must be transferred. In order to get a better idea of these costs for

real applications, I have implemented a prototype Butler and used it to obtain estimates of the

cost of executing an existing distributed signal-processing program. The results of this

experiment will be presented in Section 7.2.

1 1Sending an IPC port implies extra work for the network server; see Section 3.5.
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7.1.3.2. Banking

We will now consider the cost of the Banker and its protocols. The use of the Banker

implies some initial cost to set up accounts and to notify the Banker of the servers associated

with a signature. There is also an incremental cost for each withdraw operation.

To create a customer account, the Butler performs a CreateDependent operation and

obtains a signature. The Banker need on!y generate the signature and record the

corresponding limits and handler as supplied by the Butler. so this is a simple operation.

Then, for each server in the guest configuration, the Butler sends a message containing the

signature. Each server responds by allocating a private port for the guest and then sending a

PleaseNotify message to the Banker. When the Banker replies, the server sends the guest's

private port to the Butler. These are simple operations. so the cost will probably be dominated

by the cost of sending the messages. There are two messages (for the CreateDependent

operation) plus four per server to obtain and register private ports. The cost to invoke a trivial

operation with one argument via (two) messages using the current implementations of the

Accent kernel and the Matchmaker server-interface generator is about 11 ms, including run-

time type checking of the argument.

Once the initial guest configuration is built, there is the additional cost of withdraw

operations whenever a server allocates resources for the guest. Computationally, a

withdrawal requires finding an entry in a sparse table (indexed by signature and resourceid),

and performing several addition and compare operations. This is simple enough that most of

the cost will be in the two messages required to invoke the operation and receive a reply. For

cases where frequent withdrawals are too costly, it is possible for the server to reduce this

overhead by withdrawing resources in larger blocks and keeping track of fine-grain resource

usage locally. To summarize, the cost of using the Banker is roughly the cost of four

messages per server connection, plus two messages for each withdrawal operation. All of

these are intra-machine messages. so no network overhead is involved.

7.1.3.3. Deportation

We will now consider the cost associated with deportation. Most of the cost will probably

be that of transferring state information, but let us first look at the number of intra-machine

messages required.
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The host Butler begins by sending a LockAndRetrieve message to the Banker to obtain a

list of the guest's private ports. Next, the host sends a DeportRequest message to each

private port and waits for a message from each server containing the guest's state. Thus, to

retrieve the guest's state, it takes two messages to retrieve the private ports, plus two more for

each server. The state must then be transferred to the target machine and decoded. The

decoding process takes at least one message to forward the state, and two messages for the

server to perform a PleaseNotify operating at the new Banker. In addition to intra-machine

messages, deportation includes the process of encoding a guest's state Into messages,

transferring the state over the network, and decoding the state at a new server. The cost of

these operations depends upon how state is represented internally and externally, the cost of

consistency checking and transformation from one representation to another, and the total

amount of state information.

The cost of deportation was the subject of another experiment, in which process

deportation was implemented and measured. The results were used to determine the cost of

encoding a process into messages and then decoding the messages back into an executing

process, and the cost of deporting a guest from one machine to another has been estimated.

This experiment is described below in Section 7.2.

7.1.4. Ease of Use

The final area in which we will examine the Butler design is ease of use. The Butler design

supports both application programs and interactive use, although emphasis is placed on the

former. Application programs are supported in a number of ways. First, the agent Butler has

a simple interface that hides the necessary negotiation and authentication protocols to obtain

resources. The Butler design does not specify the representation of configuration

specifications (although a simple one is suggested), so a representation that is compatible

with the rest of the system can be used, leading to a reduction in the number of system data

types and concepts. The Butler also supports application programs by providing several

mechanisms for revocation. The options allow the application to use its own handlers or to

rely entirely on the Butler to revoke rights. Finally, it should be noted that the use of messages

and ports to hide process location is a considerable help toward writing distributed programs,

although this feature is not specific to the Butler design.

The basic Butler can be augmented with servers to support direct user invocation of remote
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programs and interaction with them as described in Chapter 6. The user interface allows

programs to be executed remotely without any changes or recompilation, and this is

facilitated by the transparency of port location. The interface can be designed to look like the

standard system command interpreter for ease of use.

7.1.5. Evaluation Summary

We have examined the Butler design from the standpoints of support for sharing,

autonomy, efficiency, and ease of use. To support sharing, the Butler provides primitives to

borrow resources and to handle revocation. The Butler gives clients direct access to servers

so as not to overly constrain the way resource-sharing programs are constructed, and the

Butler also encourages sharing with a well-protected environment. Autonomy is supported by

avoiding any dependence or trust in other personal machines for protection or resource

allocation decisions. From the standpoint of efficiency. we examined negotiation, banking,

and deportation. While the initial negotiation and banking operations are fairly expensive, the

only cost incurred while executing a guest is in Banker withdrawal operations, but this cost

can be held to an acceptable level by withdrawing resources in suitably large blocks. The

cost of deportation is likely to be dominated by the cost of encoding, transferring, and

decoding state, not by the messages required to locate and notify servers. Finally, the Butler

supports application programs by providing a simple invocation interface, and a flexible

means of handling revocation. The location transparency provided by messages and ports

also simplifies the programming task and makes it possible to build a powerful user interface.

In order to evaluate the design more completely, several experiments could be performed

without undertaking a full implementation. One such experiment is to measure the process-

to.process message delay, where the message must go through network servers as described

in Chapter 3. I do not know of any existing systems that can do this very efficiently, but work

is currently underway to implement an efficient network server for the CMU Spice system, and

message delays of 10 to 20ms are anticipated. Some experimentation with various

implementations of passing ports over a network is also warranted, since this appears to be a

frequent and potentially costly operation. In addition, the cost of authentication can be

measured when the Spice Authentication Server is implb.,,:.nted. Experiments to provide

estimates of the performance of invocation and deportation have already been performed,

and are described in the following section.
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7.2. A Prototype Butler

Several aspects of the design presented in this thesis have been implemented in the form of

a prototype Butler. The primary goal of this implementation is to get some idea of the

overhead involved in remote invocation and deportation in the context of a network of

personal computers. It should be emphasized that the results obtained cannot be expected to

completely validate or invalidate the design; however, the results can serve to indicate

problem areas or to demonstrate that certain aspects of the design are feasible.

Although the prototype is not intended to provide the full functionality of the Butler, it does

support a real distributed processing application, to be described below. The prototype

implementation is limited to the areas of remote invocation and deportation, because these

are areas where performance is an important factor, and because these areas seemed

feasible to investigate, given the current state of implementation of the Spice system,

7.2.1. Methodology

The prototype was constructed to support an existing distributed processing application

through the provision of a remote invocation operation and to implement the deportation of

processes. In each case. the prototype was instrumented to measure the cost of the

operation in terms of actual processing time, and also in more abstract terms to achieve some

degree of technology independence in the results.

For remote invocation, the cost can be described in terms of two components: the cost of

messages between Butlers to effect the invocation, and the cost of transferring files and data

to the remote machine. (Authentication was not implemented.) The cost of messages

between Butlers was measured directly in terms of actual execution time, and also in terms of

the number and size of messages. To measure the cost of network data transfer, an existing

file-transfer program was used since a satisfactory network server is not currently available.

The prototype Butler also implements deportation. The cost of deportation can be

expressed in terms of three components: the cost of extracting state from a source process,

the cost of transferring state, and the cost of installing state in a target process. Furthermore,

the state consists of a port space, an address space, and a micro-interpreter register state.

The cost of extracting, transferring, and installing each of these three components was
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measured separately, and cost is expressed in terms of both CPU time and the size and

number of object moved.

7.2.2. The Application

The application selected is a prototype for a distributed program that tracks object

locations in real time, using acoustical data from a set of microphones. The program uses

multiple processes to perform Fast Fourier Transform (FFT) 12 operations on several streams

of data. In this version, the results are simply plotted; however, the results will be used

ultimately to locate the signal source. This program was adapted for Spice by Jon Webb from

a program written by David Hornig.

The structure of the program is simple. A process, called SigGen, reads signal data and

distributes it to a number of processes that are instances of the program SigProc. In the

original program, each SigProc process performs an FFT operation on its signal and plots the

result in a local display window. Each process is started manually, and SigGen finds the other

processes through a name server. The application was originally developed as a collection of

processes on a single machine, and would not run without modification on a collection of

machines, since no provisions were made to connect the SigGen process to SigProc

processes except through the use of a local name server process.

7.2.3. Structure of the Prototype

The facilities required to adapt the signal-processing program to multiple-machine

execution are implemented in the Butler prototype. In fact, the prototype structure allows the

signal-processing program to be executed on multiple machines with no modifications

whatsoever. In this section, we will look at the structure of the prototype and see how it can

support a distributed application program. In the following section, we will describe the

deportation facility.

The prototype is implemented as two programs, a host and an agent. When executed, the

12The FFT is an operation that transforms a representation of signal strength as a function of time to one of signal
strength as a function of frequency. This is useful in a variety of applications involving signal analysis. The time
complexity of the FFT algorithm is order exactly n log n, where n is the number of sample points representing the
signal in both the time and frequency domains. In the present application, 1024 integer points are transformed.
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host registers its name with a name server and waits for a message from some agent. A

RunRemote message, when sent to the host will cause the host to execute a program. The

RunRemote message contains a program name, a command line, and a set of ports. These

ports are to be passed to the executed program, forming its execution environment (an

environment manager as described in Chapter 6 is not yet implemented), so the program can

be connected to arbitrary servers as specified by the agent. If any of the ports are null, the

host substitutes connections to servers on its own machine.

The host creates a process to execute the specified program, and then sends a reply to the

RunRemote message containing the kernel and data ports of the new process. The kernel

port can be used to directly manipulate the process: for example, a debugger can use the

kernel port to suspend the corresponding process and read or write its memory. The data

port is used to send messages to the new process.

The second component of the prototype is a program that serves as an agent. The

program includes a simple text command interpreter and provides some of the functions of

the client server described in Chapter 6. Some of the user-level commands are now

described.

The FindHost command searches for a host with a specified name. and a variant of that

command will read a list of potential hosts from a file and search for them. Assuming that a

host has been found. the RunRemote command can be used to send a RunRemote message

to a specified host. This command prompts the user for the program name and command line

to be sent in the message; thus, the agent provides a user interface that is compatible with the

existing command interpreter. In addition, the agent allows the user to specify whether the

program will receive local or remote file and name server connections. Finally, the agent

allocates a local display window and includes the corresponding ports in the RunRemote

message.

Other commands are provided to suspend or resume a remote process, and to print its

status. The command interpreter can also be instructed to read commands from a file, which

helps to automate the construction of distributed programs in which several processes must

be started on various machines.

From this description, we can see that the Butler prototype supports the signal-processing

application in several ways. First, the Butler allows the application to be run on multiple
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machines with no modification to the single-machine version. This is possible because the

Butler can create processes with port connections to foreign processes in place of the normal

port connections to local processes. Also, the command interpreter in the agent can be used

to automate the configuration of a distributed computation. 13 In addition. the Butler allows the

distributed program to be configured such that input and output requests are directed to the

user's terminal, which may not be at the site that originates the requests.

7.2.4. Deportation

The Butler prototype has also been used to investigate the cost of deporting processes.

The basic approach to deportation is to extract the state of a suspended guest process piece

by piece, and to insert the state into a newly created and suspended target process. At the

end of deportation, the target process will be logically identical to the deported guest, and

may be resumed to continue execution.

The state of the guest process consists of three components: the address space, the port

space, and a register state.14 We will look at the deportation of each of these components in

turn.

The extraction of address space from a process is simplified by the address space

manipulation primitives in the Accent kernel. The operation ReadProcessMemory is used to

move a block of memory from the guest process to an area in the Butler's address space;

because of the internal representation of address spaces, this operation is efficient even for

large blocks of addresses that may have "holes" of unallocated virtual memory. Since the

Butler's address space is no larger than that of the guest, the address space of the guest must

be copied in several chunks. Each chunk is sent as a separate message to the target Butler,

which inserts the chunks into the target process using the Accent operation

WriteProcessMemory.

Ports are extracted from the guest one at a time and sent to the target Butler. The

13 1n a full scale implementation, the comrind interpreter should be a part of the shelf or client server rather than a
part of the agent Butler. The important r t is that the agent in combination with some form of command language
cam be used to automate the constructi, of a distributed configuration.

14The register state contains the state of the micro-interpreter. including the microprogram counter, hardware
expression stack, registers, and microprogram return address stack.
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operation GetPortStatus is used to search the port name space of the guest to find valid port

names. Then, the ExtractPort operation is used to move each guest port to the port space of

the agent Butler. The agent then uses the lnsertPort operation to install the ports in the target

process's port space.

Finally, register values are read one word at a time using the Accent operation Examine.

The register values are written into the target process using the operation Deposit.

The last operation is to extract the guest's kernel port, causing the guest to be

terminated.' 5 The kernel port is installed as the kernel port of the target process, and

deportation is cor. plete. The agent Butler can then resume the target process.

7.2.5. Invocation Measurements

The Butler prototype was instrumented to measure its performance. The first set of

measurements is related to the cost of invoking a program on a remote machine; the second

set measures deportation performance, and will be discussed in the next section. The cost of

remote invocation is the sum of the Butler execution cost and the cost of transferring local

data to a remote machine. The Butler execution times are summarized in Table 7.1; the

figures represent the execution time to invoke an instance of SigProc on the local machine

using the Butler and also using the standard command interpreter, called Shell. In both

cases, process creation is performed bi sending a message, PMCreateProcess, to a process

known as the process manager, whose execution time is listed separately. Also listed is the

time to load and initialize SigProc.

Butler Invocation Shell Invocation

Agent Butler 0.43 s Shell 0.30 s
Host Butler 0.04
PMCreateProcess 0.45 PMCreateProcess 0.30
SigProc 4.5 SigProc

total 5.42 total 3.95

Table 7-1: Execution time to invoke and load SigProc using the Butler and Shell.

The Butler was instrumented to measure total elapsed time as well as execution time. The

15No process can be allowed to continue to exist without a kernel port, since a process can only be terminated by

sending a message to its kernel port.
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total elapsed time (on a singlP machine) to invoke RunRemote and get a reply is 1.9s. Of this,

1 .4s are spent invoking PMCreateProcess, which includes the creation of a new process, but

not the time to load the code for SigProc.

The measurements indicate that the invocation time is currently dominated by the time to

load a program. The execution time of the Butler (0.47s) is comparable to that of the Shell

(0.30s).

The other cost of remote invocation is the cost of sending programs and data from the local

machine to a remote one. This time was estimated using the data rate of an existing file

transfer program, CFTP, which also runs on the Perq computer. CFTP transfers about 10K

bytes per second, so roughly 7 seconds are required to send the 71.2K bytes of code that

make up SigProc. This assumes that none of the code is available at the remote machine, but

in fact, most of the SigProc code is standard system code for input, output. interfaces to

standard servers, string manipulation. real arithmetic, and debugging. Only about 15K bytes

are specific to SigProc, so perhaps as little as 1.5s would be required to transfer SigProc to a

remote machine. This requires that the loader be able to use local copies of code segments

whenever possible. Faster transfers may also result when copies of the same program are

sent to several machines, since the virtual memory system will act as a cache, reducing the

number of secondary storage accesses necessary to read the code segments. Alternatively, if

the code segments are on one or more file-server machines, the remote programs can be

loaded without placing a load on the local machine.

Once loaded, the execution time of SigProc is 6.9s, which is greater than the total transfer

time only if the remote machine can load standard code-segment files from the local

secondary storage, or if caching increases the data transfer rate. On the other hand, once a

SigProc process is created, it can be used to analyze many collections of data.

7.2.6. Deportation Measurements

The next set of measurements deals with the cost of deportation. These measurements are

designed to indicate under what conditions deportation is an economical recovery technique.

As with the invocation measurements, the cost of deportation can be divided into several

disjoint components. These are: the cost of extracting the state of a process, the cost of

transferring that state, and the cost of installing the state in a target process. The cost can be
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further subdivided according to the three components of a process: its address space, its

register set, and its port space. In addition, one process is created and one is destroyed when

a process is deported. Table 7-2 summarizes the direct measurements of the deportation of a

SigProc process.

Extract State
Address Space 4.4s
Registers 0.4
Port Space 2.7

Install State
Address Space 2.7
Registers 0.4
Port Space 0.3

Process Creation 1.6
Process Destruction 1.4

total 13.9

Table 7.2: Elapsed time measurements of the deportation of SigProc.

These figures represent elapsed time, including delays for paging. The cost of moving the

address space includes the cost of building a virtual memory description tree consisting of

about 160 nodes, each representing a "chunk" of contiguous valid addresses. No memory is

physically copied, however. There were also 35 registers and 26 ports to be moved. The time

to extract ports (2.7s) is somewhat misleading because it includes the cost of searching the

entire 8-bit port address space to locate only 26 ports; a kernel operation that returned a list of

valid port names would reduce this time to about 0.3s. The times for moving ports and

registers could be further reduced by implementing kernel operations that extract and install

collections rather than single items, thus reducing the overhead of many procedure calls,

messages, and context switches.

The cost of transferring process state between machines can be estimated as before. The

amount of state is approximated by the code size (71.2K bytes) plus the global data size (9K

bytes), or about 80K bytes. Using our previous estimate of 10K bytes per second transfer rate

gives approximately 8 seconds to transfer all of the process state. As before, this time could

be reduced if the system could recognize that most or all of the code segments already exist

on the target machine.
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7.2.7. Discussion

From the measurements of invocation overhead, it can be seen that the Butler mechanism

adds relatively little cost to the total cost of loading and executing a program in the current

Spice system. These measurements should only be taken as rough estimates; however, since

very little effort has been invested in optimizing the system for faster execution.

An important lesson learned from the measurements is that even for a computationally

intensive program like SigProc, the code transfer time may dominate the cost of remote

execution. On the other hand, several factors tend to reduce the cost of transferring code.

First, large amounts of code are commonly used utilities, and are likely to be present at the

remote machine. It is therefore important that the code of a program be composed of

separately loadable segments, so that locally available code can be combined with code from

a remote machine. In Spice, this optimization has been carried even further. so that when

pages of code are shared, only one copy is kept in physical memory, resulting in improved

virtual memory system performance. Thus, commonly used code segments may even be

present in primary memory at the remote machine. The second factor is that code may be

available from another machine, such as a file server. This frees the invoking machine's local

disk to do other useful work and may reduce the time to transfer data if the file server has

higher performance than the file system of the invoking machine. Third. the properties of

virtual memory may allow copies of a program to be sent to several machines for little more

than the cost of reading the first ccpy from secondary storage. Finally, it should be noted that

a distributed program will have additional primary and secondary storage as well as additional

processing resources. In some cases, these resources will improve the performance of a

program by more than the amount estimated on the basis of execution time alone.

While many factors will tend to improve performance beyond that which was measured, the

use of additional protection mechanisms will tend to degrade performance, and the prototype

does not implement any of these mechanisms. The additional protection mechanism

overhead was described in Section 7.1.3.2.

From the deportation measurements, we can estimate the total time to move a SigProc

process from machine to machine. Let us assume that state extraction and installation

proceed in parallel, but that state transfer does not. This gives about 15.5s to deport a

process, and there may be additional time to read swapped pages from secondary storage.
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We can conclude that in the case of SigProc, it would be more efficient to terminate the

remote process and start another one than to deport it. However, the application must be

written to handle the termination of instances of SigProc, because simply restarting the entire

configuration of SigGen and several instances of SigProc takes well over 15.5s.

7.2.8. What Was Learned

Several lessons were learned in the construction of the prototype Butler. First, the use of

multiple processes communicating through messages was found to be a powerful technique

for distributed processing applications. This is not really a new lesson (for example, see the

report on AMPL [Dannenberg 81]), but it is important nonetheless. In particular, the use of

ports to provide a communication path to a server, to function as a capability for service, and

to name the client is very useful. For example. processes are manipulated by sending

messages to their kernel ports. The kernel port provides a path to the kernel which performs

the operation, grants permission to perform the operation, and also indicates to what process

the operation should be applied. Similarly, terminal input and output is handled by sending

messages. Ports provide a path to the terminal manager, authorize a process to produce

output, and indicate on which window output should be displayed. Ports have proved to be a

very flexible mechanism for structuring a system of communicating processes.

Another lesson supports the recommendations on server design to facilitate deportation

(see Section 5.5.3): whenever possible. the server interface should contain operations to

extract and reconstruct the complete abstract state maintained by the server. Accent violated

this principle in its original port space manipulation primitives, which were designed to allow

debuggers to conveniently tap into a communication path. To support deportation, Accent

was extended with three new primitives: GetPortStatus, ExtractPort, and /nsertPort. These

are simpler and more general than the original operations, which will be removed.

The implementation of the prototype Butler consists of about 2200 lines of code in an

extended version of Pascal, and it took between one and two man-months for the author to

implement; the code length does not include standard packages that are used for interfacing

to the kernel and servers. A Butler that provides authentication, protection, and policy

administration would be much larger than the prototype.

From the measurements, we learned that the overhead of the Butler in invoking a remote
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program is comparable to the overhead of the current system's command interpreter and that

the major source of overhead is in transferring files across the network. It is therefore

important that the system take advantage of the fact that a large part of a program may

already be present at the remote machine. With this optimization, which is part of the Spice

system design. the signal-processing application would profit from distribution. Negotiation

and particularly the authentication protocols will add additional overhead; however, if we

assume an overhead of 20ms per network message, this overhead is only 240ms, which is

small compared to other factors.

Deportation has also been demonstra d. and again, the measured performance indicates

that data transfer accounts for most of the deportation time. If code accounts for most of the

state of a process, and if deportation can be optimized to take advantage of code that is

already available at the target machine, then deportation will cost little more than invocation

of the same program. On the other hand, if these constraints are not met. then deportation

may only be desirable as a convenience, or when checkpointing or other means of handling

revocation would be complicated or expensive.

7.3. Conclusions

This research has developed in roughly three phases. In the first phase, it was recognized

that resource sharing is important in a personal computer environment, and the principal

problems of sharing were identified. It was discovered that autonomy has a profound effect

on the structure of a network of personal computers. Machine owners should be able to

control the use of their machines, including how they are shared. Another important

consideration, related to autonomy, is that personal machines are not physically protected,

which complicates the problem of maintaining security when machines are shared. Our goal

was to provide protection equivalent to that of a conventional time-shared system, and to

allow as much sharing as machine owners are willing to permit.

The Butler concept was developed to provide a foundation from which these problems

could be approached. The Butler has ultimate control over the resources of a machine, and

acts on behalf of the machine owner to supervise the borrowing of resources. The Butler

concept inherently supports autonomy since a Butler is associated with each machine. In

addition, the Butler concept also seemed like a good basis for protection mechanisms since it

places a single process in charge of the users of a machine.
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In the second phase, the Butler concept was developed into a wel-defined operating

system component for the support of resource sharing. The Butler maintains a global view of

the machine it controls, enabling it to administer policies set by the owner; and because the

Butler is a trusted piece of software. it is the logical place to perform authentication pro'c-ols

which are necessary to identify users of malicious software. The Butler also controls the

revocation of resources.

Although originally conceived as a mechanism to run programs on remote machines, the

Butler has been generalized as a mechanism to invoke remote operations, where the

operation can be performed by an existing server process, a newly instantiated server, a

configuration of servers, or a specified program. It is intended that the Butler use whatever

representation of configurations is used for other purposes in the system, and it is the

flexibility of the configuration specification language that ultimately determines the kinds of

operations that the Butler can invoke.

As the requirements of the Butler became more specific, it was realized that the Butler

actually should perform two roles. The first role, called the host, is concerned with protecting

the local machine from malicious users. As a host, the Butler places limits on the resources

available to guests, and uses an encryption-based protocol to authenticate the identity of a

guest before granting any resources. The second role, called the agent, is a server that hides

much of the host Butler protocol from clients that desire to invoke remote operations. The

agent locates a host, authenticates itself and the cilent to the host, and negotiates with the

host to obtain resources and invoke the desired operation.

In the process of designing the Butler, it became necessary to augment the Butler with an

accounting system called the Banker. The Banker is the means by which the policy, as

determined by the Butler, is made known to servers. Before granting resources to a process,

servers consult the Banker to determine if the process has permission to use the requested

resources. Because the Banker is strictly an accounting mechanism, it turns out to be quite

simple, but because it is protected by a secure operating system, the Banker is also quite

powerful. One of the important properties of the Banker is that any program can become a

server, define new resources, and use the accounting mechanisms of the Banker.

The third phase has been the implementation of a prototype Butler. The prototype

demenstrate3 that a Butler-like program can be used to support a distributed application
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program. The prototype deportation mechanism has demonstrated the deportation of a

process, even when the process is in the midst of executing application-specific microcode.

Furthermore, deportation is entirely transparent to the application. Instrumentation of the

prototype has shown that the overhead of the Butler to invoke a program on the local machine

is comparable to the overhead of using the command interpreter to perform the equivalent

operation. The results indicate that the main overhead of invoking a remote program will be

the cost of transferring data across the network to the remote machine.

While the chosen application demonstrates the usefulness of the Butler for distributed

processing, the Butler is intended to support other styles of resource sharing as well. While

the prototype has not been used for data-sharing or load-sharing applications, we sketched

how the Butler supports these applications in Chapter 2 and described the user interface

necessary for load sharing in Chapter 6.

I conclude that the Butler concept is a useful one. in that it provides solutions to a number

of resource sharing problems, and it supports a variety of applications. The Banker is a

powerful and general facility for restricting the rights of processes. I have demonstrated the

Butler concept with a prototype and provided a preliminary evaluation; however the final

evaluation of the Butler must await experience with a more complete implementation.

7.4. Future Directions

I have been careful to use the term "prototype" to describe the present implementation.

The next step is to implement a "real" Butler and Banker for the Spice system. The Butler will

use the authentication server and name server components of the Spice file system, and will

perform negotiation and revocation as described in this dissertation.

It would be interesting to investigate practical methods of protection under different

assumptions about the sophistication of users and the value of information maintained on

machines. For example, many (if not most) existing personal computer systems provide little

or no protection through the encryption of data. In relatively "friendly" environments such as

an office or research institute, it may be possible to achieve a suitable level of protection with

simpler and more convenient techniques than those described in this dissertation. This might

lead to a greater degree of sharing and simpler protocols.
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In Chapter 5, a simple representation of configuration is defined; however, we did not

address all of the problems of configuration specification. Better representations are needed

for assisting software development, and when an improved representation is designed, it can

be integrated into the Butler.

7.5. Contribution to Computer Science

This dissertation recognizes the special consideration that must be given to resource

sharing in a network of autonomous machines. It is particularly important to consider the

issue of protection, since the assumption of physical security used to design secure time-

sharing systems is not necessarily applicable to personal computers. In addition, new

techniques are required to support sharing when machines are autonomous, and the

distributed nature of a network of personal computers must also be accomodated.

I have identified a number of requirements for a system that supports resource sharing in a

network of personal computers and presented a design for a system that meets these

requirements. The requirements include the ability to invoke remote operations according to

a configuration specification, secure authentication and authorization of resource sharers,

and support for the autonomy of both resource borrowers and resource lenders.

The information in this dissertation can be used to construct networks that support

resource sharing without sacrificing user autonomy. In particular, this dissertation presents a

comprehensive and coherent design for a resource-sharing facility called the Butler. The

design will serve both as a basis for implementation and as a point of departure for the design

and evaluation of alternatives.

At a more abstract level, this dissertation tells how to construct an execution environment

that conforms to a set of policies and is protected against exploitation. This is a necessary

step toward more powerful and more secure computer systems based on personal computers

and local area networks.
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Appendix A
Message Specifications

This appendix explains the notation used to describe message interfaces. Although

messages are often thought of as simply carriers of data, their most common use for our

purposes is to invoke remote operations. This usage is reflected in our syntax, which is based

on the Ada [DoD 801 syntax for subprogram specifications.

The complete syntax is given below, using the syntax notation of the Ada reference manual

[DoD 80]:

messagespecification."
procedure identifier [ formal part]
I function identifier [ formal_part ] return subtype~indication

formalpart :: = (parameter.declaration {; parameter-declaration))

parametersdeclaration :: = identifier list: mode subtype.indication

identifier list :: = identifier {, identifier)

mode :: = [in] I out I in out

The meaning of a message specification is straightforward. Normally, the specification

describes two messages, an invocation and a reply. The invocation message consists of the

following:

1. An operation code that corresponds to the procedure or function identifier. This
tells the receiver what operation to perform, and serves as a tag to identify the
message format.

2. A list of parameters: every parameter with mode in or in out is included in the
message in the order implied by the specification. Parameters are passed by
value.

3. A sequence number to be returned in the reply message.
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4. A reply port.

Since every message includes a destination and a reply port, these are not included explicitly

in the specification syntax.

It is assumed that the receiver of the invocation message makes available an operation

defined as a subprogram whose formal parameter list matches that of the message

specification, and whose name corresponds to the operation code. The receiver of the

invocation message performs the indicated operation using the supplied parameters and then

constructs a reply message with the following components:

1. A reply code that corresponds to the procedure or function identifier. Like the
operation code in the invocation message. this component identifies the message
format.

2. A list of parameters: for reply messages, every out or in out parameter is
included. For function specifications, the return value is treated as an additional
out parameter.

3. A sequence number, this is a copy of the number used in the invocation message.
Its purpose is to allow the invoker to match the reply with the invocation.

Normally, message interfaces use synchronous communication, that is, the invoker waits

for a reply before proceeding; however, no reply is sent when a procedure is invoked with only

in parameters.

Most of the message interfaces described in this dissertation are functions that return type

GeneralReturn, which is a subtype whose base type is Integer. This format is used to

implement a simple form of exceptional condition handling where the returned value is either

Success, or a code indicating an exception. Warning: although not mentioned explicitly in

every message interface specification, the return code Error is a standard non-specific

exception code that may be returned by any operation.

This notation is based on that used in the Accent Kernel Interface Manual (Rashid 821 and

on the design of Matchmaker, the Spice message interface generator [Wright 821.
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Appendix B

Another Perspective On
Protection And Autonomy



Butler Blues

as improvised by Craig Madge, November 1981

Lyrics by Roger Dannenberg and Frances Krouse
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